

RBE 3002 Final Project:

Navigation

Bhon Bunnag
Yil Verdeja
May 1, 2018

TABLE OF CONTENTS
LIST OF FIGURES 2

1 INTRODUCTION 3
1.1 Equipment 3
1.2 Turtlebot3 Specification 4
1.3 Maze Description 4

2 METHODOLOGY 5
2.1 Preliminary Material 5

2.1.1 Turtlebot3 Kinematics 5
2.1.2 Obstacle Expansion and Grid Size 5
2.1.3 A* Algorithm Implementation 6
2.1.4 Obstacle Avoidance 6

2.2 Exploration 7
2.2.1 SLAM and Gmapping 7
2.2.2 Frontier Exploration 7

2.3 Changing the Map 8
2.3.1 Grid Size 9
2.3.2 Obstacle Expansion 9

2.4 Navigation 9
2.4.1 Modifying A* Heuristic 9
2.4.2 Localization 10

3 RESULTS 10
3.1 Overall Findings 10

3.1.1 Exploration 10
3.1.2 Navigation 11

4 DISCUSSION 11
4.1 Observations 11

4.1.1 AMCL vs SLAM 11
4.1.2 Detecting Fake Frontiers 12

4.2 Improvements 12
4.2.1 Failure of Navigation 12
4.1.3 Detecting Fake Frontiers 12

5 CONCLUSION 13
5.1 Future Implementations 13

1

LIST OF FIGURES
Figure 1 TurtleBot3 Burger Model 4
Figure 2 A* Search Algorithm with Search (Pink), Final Path (Orange) and

Intermediate Waypoints (Green)
6

Figure 3 Automating Exploration through Frontier Exploration 8
Figure 4 Different paths with equal costs 9
Figure 5 Map from environment in demo run 10
Figure 6 Different intervals subject to different grid sizes 12

2

1 INTRODUCTION
With the increasing demand of autonomous vehicular systems, navigation has become one of the
most important field in robotics. With a focus on navigation, position estimation and mapping,
the function of this project is to help in further understanding the ROS (Robot Operating System)
structure and implement:

1. Forward and inverse robot kinematics
2. Path planning algorithms
3. Noise filtering
4. And simultaneous localization and mapping algorithms

From the start of the project, a kinematics model for the robot was implemented (using
differential drive motion, trajectory generation and odometry reporting), as well as a real-time
A* path planning algorithm for constant replanning and for optimizing navigation through a
dynamic environment. This section of the project focuses on combining every aspect from
previous sections, and developing ROS packages and nodes for the turtlebot3 burger to allow it
to navigate in an unknown maze from a specified corner to its diagonally opposite corner in the
shortest path. From the project specifications, the objectives of this project are as follows:

❏ Through frontier exploration and the use of the ROS navigation stack, explore the entire
maze and save a 2D occupancy grid in a map file

❏ Modify the A* heuristic to penalize the number of turns in a path
❏ Find the lowest cost path from start to goal, generate waypoints and navigate

autonomously through the map using the optimum path (ideally the fastest route)
❏ Find the best turning radius and add additional waypoints to turn smoothly instead of

stopping and turning.

1.1 Equipment

To complete this project, the following are necessary:
❏ A computer running Linux on the Ubuntu OS
❏ Turtlebot3 Burger Robot and corresponding ROS (kinetic) packages

3

1.2 Turtlebot3 Specification 1

With a maximum translational velocity of 0.22 m/s, and a maximum rotational velocity of 2.84
rad/s, the turtlebot3 burger weighs roughly 1 kg and has a size of 138mm ⨉ 178 mm ⨉ 192 mm
(L ⨉ W ⨉ H).

Figure 1. TurtleBot3 Burger Model

To sense its environment, the turtlebot3 burger is equipped with a 360 Laser Distance Sensor
(LIDAR), which is a 2D laser scanner that collects a set of data around the robot to use for
SLAM (Simultaneous Localization and Mapping) . 2

1.3 Maze Description

The maze that the robot will travel through is described below:
1. It is composed of walls such that the minimum distance between 2 adjacent walls on at

least one path from the start to goal is of 40 cm (enough space for the robot to traverse
around it)

2. The walls are high enough to be detected by the LDS sensor on the turtlebot 3 (therefore
the walls are much higher than 192mm)

3. The start of the maze is located at one of the four corners and the goal is at the diagonally
opposite corner. The time starts when the robot leaves the first cell.

1 (n.d.). TurtleBot3 - ROBOTIS e-Manual. Retrieved April 25, 2018, from
http://emanual.robotis.com/docs/en/platform/turtlebot3/specifications/
2 (n.d.). 360 Laser Distance Sensor LDS-01 (LIDAR) - Robotis.us. Retrieved April 25, 2018, from
http://www.robotis.us/360-laser-distance-sensor-lds-01-lidar/

4

http://emanual.robotis.com/docs/en/platform/turtlebot3/specifications/
http://www.robotis.us/360-laser-distance-sensor-lds-01-lidar/

4. Multiple paths to the destination may exist (its depends on the robot to choose the most
optimal path)

2 METHODOLOGY
This section will go through the steps that were taken to complete this project. It is built on
previously completed material such as the implementation of a kinematics model for the robot,
obstacle expansion, re-planning, and obstacle avoidance - which will be explored further in
section 2.1​. This final project was broken up into two tasks: exploration and navigation. The
exploration task shows how the objective of exploring an unknown environment and creating a
map from its sensor readings is completed. Similarly, the steps taken to complete the navigation
task verify how the robot will traverse from one corner of the map to the opposite corner in the
shortest amount of time.

2.1 Preliminary Material

This subsection will summarize the preliminary steps that were taken in order to complete this
project. For a more in depth description, see previous reports.

2.1.1 Turtlebot3 Kinematics

The script ​robot.py​ handles all of the robots movements and kinematics. The main function that
will be called will be the ​navToPose​ function that calls both the ​driveStraight​ and ​rotate
functions. As the name suggests, the ​navToPose​ function navigates from an original pose to a
goal pose. It does this by first rotating the robot towards the direction of the goal, then driving
straight towards it, and finally rotating to its goal orientation. The ​navToPose​ function is
iteratively called for every intermediate waypoint before the goal point that is generated by A*.

Another function that can come to use for better maneuverability of the robot is the ​driveArc
function which taking a radius, a speed, and a final angle, drives a specified arc. If implemented
correctly in the project, this function may help the robot turn without stopping.

2.1.2 Obstacle Expansion and Grid Size

The script ​getGridCellData.py​ focuses on processing all the environmental data collected by the
Lidar sensor. Two of its main functions are to expand the obstacles and affect the grid size. The
C-Expansion​ function grabs every node in the occupancy grid that is an obstacle (~100), and
depending on the size (i.e. size ​n​) of the expansion, it will make its neighbors (i.e. ​n​ neighbors
away from origin node) and set them as obstacles on the occupancy grid.

5

The second function is the ​resizeMap​ function which changes the size of the grid by a certain
interval. Increasing the interval, increases the size of each grid cell. In order to effectively get all
the nodes within this newly transformed grid, the cells around them are chosen to cluster into one
whole cell depending on the ​interval ​factor. A grid size that is too big results in very precise
movements that the robots odometry errors is not able to handle. However, making a grid size
too small, allows for an increase in errors as it over generalizes the map.

2.1.3 A* Algorithm Implementation

The final script is the ​searching.py​ script which handles the A* algorithm and its heuristic for
optimally traversing the map from origin to goal cell. The preliminary heuristic of the searching
algorithm is defined by the sum of g(n), the manhattan distance (with diagonals) from the start
node, and h(n), the euclidean distance to the goal node. If utilizing a cost map, it takes into
account the probabilistic cost of traversing to a node that is open or blocked (0 - 100). By
searching the map with the provided heuristic, the A* algorithm retrieves the most optimal path
from start to finish. From the final path, intermediate waypoints are generated at every node
where a turn occurs.

Figure 2. A* Search Algorithm with Search (Pink), Final Path (Orange) and Intermediate

Waypoints (Green)

2.1.4 Obstacle Avoidance

The use of a service was implemented to continuously call the A* algorithm after the robot
finished traversing an intermediate waypoint. For every waypoint, the robot would search again
for a new path as changes to the map may have been made.

6

2.2 Exploration

With the help of the ROS navigation stack library, frontier exploration was implemented in order
to explore an unknown map. This section describes how mapping of the environment with the
laser scan took place.

2.2.1 SLAM and Gmapping 3

SLAM (Simultaneous Localization and Mapping) refers to the problem of trying to
simultaneously localize (i.e. find the pose of) the robot using sensor readings of its surroundings,
while at the same time mapping the structure of that environment. In ROS, there exists a 4

gmapping package that provides laser-based SLAM as a ROS node called ​slam_gmapping​. With
slam_gmapping​, a 2D occupancy grid map is created from the laser and pose data collected from
the robot.

An occupancy grid represents a 2D grid map where each cell represents the probability of
occupancy. The probabilities range between 0 and 100, where 0 defines an open space, while 100
defines a blocked space. Unknown cells are denoted with a -1.

2.2.2 Frontier Exploration

A frontier is defined as the border where an open node and an unknown node meet. These are
areas that must be explored in order completely map the environment that the robot is located in.
In the ​searching.py​ script, by subscribing to the ​map​ topic which returned the ​slam_gmapping
occupancy grid, the automated search was implemented within the ​automatedSearch​ function.

As seen by the function, if a node in the occupancy grid had a probabilistic cost between 0 to 30,
and neighbored an unknown node of value -1, then it was considered a frontier. However, a
single node on the map could not be considered a frontier as the ​slam_gmapping​ node is not
accurate enough to get to that degree of certainty, but also misreadings or noise could appear that
would misguide the robot.

To fix this issue, the frontier had to be of a certain size. Too small would cause the robot to travel
to fake frontier borders, while making the frontier size limit too big would stop the robot from
exploring actual frontiers. Considering the size of the grid, the frontier size limit had to be
greater than 2 bordering nodes in order for it to be considered a frontier. Once found, the robot

3 (n.d.). gmapping - ROS Wiki - ROS.org. Retrieved April 29, 2018, from ​http://wiki.ros.org/gmapping
4 (2016, May 13). An Introduction to Simultaneous Localisation and Mapping | Kudan. Retrieved April 29, 2018,
from ​https://www.kudan.eu/kudan-news/an-introduction-to-slam/

7

http://wiki.ros.org/gmapping
https://www.kudan.eu/kudan-news/an-introduction-to-slam/

would navigate to it. After mapping the whole unknown map, the search would stop including
the robot.

The heuristic that was implemented for exploring frontiers was a greedy one. It would explore
the closest one to the robot at that instance. Considering the map was small and compact, this
method was justified.

Figure 3. Automating Exploration through Frontier Exploration

2.3 Changing the Map

After mapping the whole closed environment with the ​slam_gmapping​ node and frontier
exploration, the map needed to be changed in order to allow for better maneuverability when
navigating through it. As mentioned previously in the preliminary steps prior to this project, a

8

grid size and an obstacle expansion were implemented. In this lab, since the robot had to
navigate the real-world rather than the simulated world, some changes had to be made.

2.3.1 Grid Size

For occupancy grid used in the prior lab was with an interval size of 4. The reason for this was
because this interval divides without remainder for the 384x384 grid (into a 96x96 grid) and
reduces the grid size so that A* can be called regularly without taking too much time. However,
this large interval was implemented in a simulation that had large open spaces for the robot to
navigate through. Since the real-map of the robot consisted in walls that were 40 cm apart, it
would be much more compact, thus the grid size had to decrease to an interval of 2. This change
not only would stop obstacles from expanding too much, but also it would allow the robot to
have more precise movements. Nonetheless, if the grid size is not large enough to make it
represent a point on the simulation, then errors of the robot meeting the surrounding can occur.

2.3.2 Obstacle Expansion

Expanding the obstacles too much could result in blocked off open pathways. Therefore the
obstacle expansion algorithm was kept to expand the first neighboring nodes of occupied cells.

2.4 Navigation

After SLAM was performed to obtain a map, the map was saved via ​rosrun map_server map_saver​. The
2d pose estimate ​command was used to provide an initial guess in order to help the robot
localize, and navigation begins after AMCL is activated. The navigation was broken down into
two different stages: A* pathway mapping and robot kinematics, as explained in 2.1.3 and 2.1.1
respectively.

2.4.1 Modifying A* Heuristic

For the final lab, the robot was occasionally providing sub-optimal paths. This was because the
cost g(n) was equivalent for traveling straight and diagonals.

9

Figure 4. Different paths with equal costs 5

This was fixed by changing the weight of traveling through a diagonal. Traveling in a straight
line still costs 1. However, traveling diagonally now will costs . In other words, the cost g(n)√2
is determined by the Euclidean distance from the current node.

2.4.2 Localization

Localization was performed using AMCL via ​roslaunch rbe3002_d2018_final_gazebo
final_run.launch map_file:=./map.yaml​, as provided. AMCL uses a particle filter to determine
its location, which will eventually converge on a location and make /odom more accurate over
time.

3 RESULTS
This section serves to describe how the robot did in the real-world to complete its tasks. The
program on the turtlebot was implemented to both do autonomous exploration of an unknown
environment through the use of the Monte Carlo Localization and to autonomously explore the
map using the A* algorithm.

3.1 Overall Findings

3.1.1 Exploration

By using the gmapping package libraries included in ROS, and through frontier exploration, the
robot was successful in mapping its environment. The figure below shows the returned map file
from the demo, prior to inflation of its obstacles. As seen, the white portrays the open space (0),
the black portrays occupied space (100), while they grey portrays unknown space (-1).

Figure 5. Map from environment in demo run

5 In the original A* algorithm, these two different paths are evaluated as having equal costs.

10

Although this was deemed a success, as seen in the image, there exists nodes that are on the
outside border of the occupied cells (perimeter) which are considered as ​known​ or open spaces
rather than unknown areas. Nonetheless this noise was minimal in even affecting the results of
the exploration. After the inflation of obstacles, most of those noisy nodes will be covered with a
known​ cell.

3.1.2 Navigation

After receiving the map from the exploration phase, and adjusting it to its corresponding grid
size and obstacle expansion, the second phase of the demo began. Through localization, the robot
was able to find its relative position to the map. From there, using Rviz, a pose on the opposite
side of the map was selected for the robot to navigate to. With the implemented A* algorithm
and localization, the robot was able to find the optimal path and start navigating to its
intermediate waypoints.

In various runs beforehand, the robot would navigate effectively through the map to the desired
pose. However, at times, it would skim certain walls. During the demo, the turtlebot kept coming
in contact with the same wall which hindered its navigation to the goal pose.

4 DISCUSSION
From the results of the demo, the purpose of this section is to state any observations, and analyze
what went wrong and how they could be avoided/improved with different implementations. The
observations include experiments on localization methods, as well as false sensor readings from
the robot to the map. This section also describes means to improve on certain aspects, such as:
smoother navigation and the removal of sensor noise.

4.1 Observations

4.1.1 AMCL vs SLAM

Initially, SLAM was used to perform localization after mapping is complete. We believed this
method would be more accurate, since further mapping (while localizing) would correct errors
from the initial mapping. When we ran experiments with this method, we found that although
initial errors are corrected sometimes, more errors are also mapped. We determined in the end
that using AMCL on the saved map was more accurate.

11

4.1.2 Detecting Fake Frontiers

Although we do have a method in differentiating between real frontiers and fake frontiers as
mentioned in 2.2.2, it is still not perfect. As a result, the robot occasionally tries to navigate to
these fake frontiers, and wastes a lot of a time as a result. We relied mainly on the fact that the
navigation will eventually abort this impossible navigation and move on to the next one.

4.2 Improvements

4.2.1 Failure of Navigation

Although this was successful in prior runs [see video], in the actual PDR it failed. We have a few
hypotheses to why it failed. Firstly, we believe there may be a mapping error due to noise. The
mapping snipped out the edge of one specific border, so it appeared shorter than it really is. The
A* algorithm, in its attempt at finding the optimal path, made very sharp turns. These two issues
combined caused the robot to keep crashing of that border, and could not go further.

Though the former error could not be trivially fixed, the latter can. We believe that by either
using a wider width for C-Expansion or changing the interval of grid clustering from 2 to 3, the
border would have expanded and force the A* algorithm to take a wider turn. This would
ultimately make the robot avoid the wall.

Figure 6. Different intervals subject to different grid sizes 6

4.1.3 Detecting Fake Frontiers

The most obvious way to solve this problem is to determine if the frontier could be reached
before calling the Navigation Stack. We would use the A* algorithm to determine whether the
path is reachable, and if not it would move onto the next candidate frontier. This idea was
conceived of before the demonstration, was not implemented due to time constraints.

6 The width and height of the map is an integer value that is depicted by the sum of the remainder and the quotient of
the previous width and height

12

5 CONCLUSION
This lab provided a further experience of using ROS to control the robot in a known and
unknown environment, in both simulation and the physical world. The robot used SLAM in
order to localize and map an unknown environment. AMCL was then used to localize in a known
environment.

5.1 Future Implementations

The following are future implementations that can provide significant benefits to the robotic
system, specifically in limiting waiting periods on the robot through rotations and/or actual stops.

1. Turning without stopping:
In order to increase the speed of the robot in general, the robot should be able to perform
arc-drives (moving forward while rotating). This was implemented in Lab 2 via the
driveArc​ function, and we would need to add an intermediate function that takes in as an
input the desired destination and executes this function correctly.

2. Finding the minimum angle rotation:
In many instances, the robot did not rotate optimally to the desired angle. This was due to
the overflow of angle values (it changes from 180 degrees to -179 degrees). In order to
fix this, a more precise mathematical algorithm would be needed in order to detect this
overflow.

3. Backward drive to reduce rotation:
We observe many cases in which the robot would need to rotate more than 90 degrees
before moving straight. A more efficient method would be to allow the robot to drive
backwards as well. This would mean that the robot will never have to rotate more than 90
degrees.This is because a rotation of and a linear movement of is equivalent to aθ d
rotation of and a linear movement of .80 1 − θ − d

13

