

Design Specifications

Document

Submitted By
Team 9: Uranus
James Kradjian
Jonathan Redus

Yil Verdeja

Date Submitted: February 28, 2018
Data Completed: February 14, 2018

Course Instructor: Loris Fichera
Lab Section: RBE 3001 C01

1

TABLE OF CONTENTS
LIST OF FIGURES 3

LIST OF TABLES 3

1 INTRODUCTION 4
1.1 The Robotic Manipulator 4

2 SYSTEM DESIGN 5
2.1 Overall Software Design 5

2.1.1 Firmware Programming 5
2.1.2 Matlab Programming 5

2.2 System Architecture 6
2.2.1 Servers 6
2.2.2 PID Tuning 7
2.2.3 Position Kinematics 8
2.2.4 Differential Kinematics 11
2.2.5 Motion Planning and Trajectory Generation 12
2.2.6 Live Plotting 13
2.2.7 Computer Vision 14

2.2.7.1 Camera Tracking 15
2.2.8 Object Weighing 15
2.2.9 Sorting 16

3 Organization 17
3.1 Refactoring 17

2

LIST OF FIGURES
Figure 1 Home Position of Robotic Manipulator 4
Figure 2 System Diagram 5
Figure 3 Status server and Calibration server operational diagrams 7
Figure 4 Reference Frame of Elbow Manipulator 8
Figure 5 Position Forward Kinematics Implementation 9
Figure 6 Full Drawing of the Inverse Kinematics 10
Figure 7 Error Cases inside the Inverse Kinematics Function 10
Figure 8 Numeric Inverse Kinematic Algorithm Flow Chart 12
Figure 9 CAD model of the robot arm 14
Figure 10 Image Processing Process 15
Figure 11 Example Sorting Configuration 17

LIST OF TABLES
Table 1 DH parameters of Elbow Manipulator 9

3

1 INTRODUCTION
The goal of the final project is to build an automated robotic sorting system, where the robot will
localize certain objects within its workspace, pick them up, classify them based on weight and
appearance, and release them within a predefined area.

The objective of this document is to provide a deeper understanding of how the overall software
is designed, and how the architecture of the software is structured to make the robot function as
specified. This document will also specify what has been completed, what must be improved,
and lastly what must be done to complete the project. The system design section will go in depth
in describing how the robot will be capable of completing the goal of the project.

1.1 The Robotic Manipulator
The robot manipulator is a 3 degree of freedom (DoF) elbow manipulator with no prismatic
joints. The base joint rotates about the Z axis, whilst the second and third joint rotate about the Y
axis. This can be seen on Figure 1, which shows the robotic manipulator at home position.

Figure 1. Home Position of Robotic Manipulator

When the robot is at home position, the end effector position should be at a position of zero in
the X, Y and Z plane. This will be further discussed in section 2.2.1 which will show how this
feature was implemented. The given link lengths of the robot were given as 0.135, 0.175, and
0.16928 meters for links one, two and three respectively, however they may be changed in order
for more precise plotting for the stick model.

4

2 SYSTEM DESIGN
This section will discuss the layout of the code. The code is divided into two categories:
firmware, which runs on a Nucleo board, and Matlab code, which runs on a PC.

2.1 Overall Software Design
The firmware and Matlab code communicate with one another to make the robot achieve tasks.
The following is an overview of how the system will work:

Figure 2. System Diagram

2.1.1 Firmware Programming
The Nucleo, the microcontroller running the firmware, has two interfaces to the host computer: a
virtual serial port, to update the firmware, and a HID port, to communicate with the host
computer. The virtual serial port is rarely used, since the information the servers send and
receive is enough to complete the lab. The HID port operates with the Nucleo as a USB slave
device. The host computer sends packets to the microcontroller, which are then interpreted in the
firmware, and either a packet is sent back to the computer or the robot completes some action.
Using this system, the host computer can move the robot to any position within the working area.
This allows the host computer to cause the robot to pick up the objects.

2.1.2 Matlab Programming
Matlab on the host computer does most of the calculations, as it is on a mid-end Intel i5. The i5
is significantly faster than the Nucleo, since it is a high powered application processor. Section
2.2 goes into further detail on the Matlab code.

5

2.2 System Architecture
This section will discuss the subsystems of the code, including the theory behind the code as well
as flowcharts and code snippets to show how the code works.

2.2.1 Servers
In order to communicate between the robot and the computer, several servers had to be
implemented: the calibration server, the PID configuration server, the PID server, and the status
server. All servers communicated with 16 byte words, where the first byte was the server ID for
the specific server, so that all servers could be run at once.

The PID and PID configuration were created by a third party, and existed before the course
began. The first server created for the project was the status server. It sends an empty packet
from Matlab to the robot when the status command is called. The robot then reads the position,
velocity, and force values from the hardware, and sends the data back in a packet of the form:
Server ID; Joint 0 position; Joint 0 velocity; Joint 0 force; Joint 1 position; Joint 1 velocity; Joint
1 force; Joint 2 position; Joint 2 velocity; Joint 2 force; six empty values. The calibration server
works whenever the calibrate command is called from Matlab. Matlab sends a packet with the
position values of the arm. The firmware would then update the home position, by subtracting
the values sent to it from the previous home values.

6

Figure 3. Status server and Calibration server operational diagrams

In this lab, the status server will have to be updated to average the values of the torque sensor.
This is because the torque sensor is prone to inaccuracies. This will be accomplished by reading
the value from the force sensor several times in the firmware when the status command is called,
then averaging the readings. This will be done in the firmware and not the Matlab code because
Matlab will take significantly longer to do call several status packets and take the average than
using the firmware would.

2.2.2 PID Tuning
In previous labs the PID was tuned by looking at the motion of the robot alone. However, in this
lab, external forces and torques have to be considered in order for the robot to have smooth
transitions between different positions in the workspace.

To take the weights into account, either the firmware code on the PID controller has to change to
compensate gravity and torque at the end effector, or seperate gains will be calculated for the
different weights that might be in the system.

To get the most accurate results, the following steps will be followed to tune the PID:

7

1. Set all the gains to 0
2. Increase the Proportional Gain KP until there is some overshoot (10-20% overshoot)
3. Increase the Integral Gain Ki until the waveform shows it is going to steady state
4. Increase the Derivative Gain Kd until oscillation is removed, and the step response is very

stable
5. Tweak the gains if the desired response has not been achieved

In order to get better results, various motions will be tested and their position trajectories will be
plotted. In that case, every time a gain for the PID control is changed, it can be seen throughout
each movement how that change is affecting it.

2.2.3 Position Kinematics
In order to obtain the relationship between the position and joint angles, both forward and
inverse kinematics had to be implemented. By drawing out a reference frame, and figuring out
the DH parameters of the elbow manipulator (See Figure 4 and Table 1 respectively), given a set
of joint angles the position of each joint could be found using forward kinematics.

Figure 4. Reference Frame of Elbow Manipulator

8

Table 1. DH parameters of Elbow Manipulator

Links θ α a d

1 θ1 90° 0 L1

2 θ2 0 L2 0

3 θ3 - 90° 0 L3 0

The math can be seen within the fwkin3001 function below where transformation matrices are
used to obtain the position of each joint in the workspace. The getPosV function gets the position
vector of the transformation matrix which is the first three rows on the 4th column.

Figure 5. Position Forward Kinematics Implementation

However, to move the robot to a specific position in the workspace, the orientation has to be
found. This is done through inverse position kinematics using a geometric approach. Looking at
the ikin3001 function and Figure 6, the joint angles are given by the following equations:

tan2(P ,)θ0 = a Y P X

9

rccos(−)θ2 = a 2L L2 3

L +L −((P −L) +P +P)2
2

3
2

z 1
2

x
2

y
2

There are two possibilities for the last angle that depend on the angle of the second joint .θ1 θ2

 when orθ 1 = rctan rcsin a (P −Lz 1

√P +Px
2

y
2) + a (L sin(θ)3* 2

√(P −L) +P +Pz 1
2

x
2

y
2) θ 2 ≥ 0

 when θ 1 = rctan rcsin a (P −Lz 1

√P +Px
2

y
2) − a (L sin(θ)3* 2

√(P −L) +P +Pz 1
2

x
2

y
2) θ 0 2 <

Figure 6. Full Drawing of the Inverse Kinematics

Another approach to solve for the inverse kinematics would have been to use the symbolic end
effector position obtained from the transformation matrices and solve for the joint angles.
However the geometric approach was chosen due to its simplicity. To make sure that the
positions passed into the inverse kinematics function were within the workspace, error cases
were included as seen in Figure 7. This ensured that the robot would not be sent to place it could
not reach.

Figure 7. Error Cases inside the Inverse Kinematics Function

10

2.2.4 Differential Kinematics
There are several Matlab functions which utilize differential kinematics: fwDiffKin, invDiffKin,
and numInvKinAlg. All of these depend on the jacobian, which is generated using the jacob0
function.

The jacobian is a matrix which represents the relationship between the joint variables of the
robot and the position and orientation of the end effector. It has the form:

In order to calculate this in Matlab, the jacobian is broken into two parts: the position jacobian
and the orientation jacobian. These are related to the jacobian as follows:

(q) J = J (q); J (q)[p o]

These can be represented by the following equations:
(q) Jp = ... â p) ...[i × (e − pi]

(q) ... ξâ ...]Jo = [i

Where is the 3rd column of the rotation matrix from the transformation matrix of joint i, isâi pi
the position of joint i, and is the position of the end effector, and is 1, because this onlype ξ
needs to consider rotational joints. Thus, using the DH matrices derived in lab 2, a function to
calculate the Jacobian based on the joint angles of the robot was created. For the base joint the

is [0;0;1] column vector, whilst the position is at [0;0;0]. For the second and third joint,â0 p0
transformation matrices and are used to determine and . All of this was implementedT 1

0 T 2
0 âi pi

in Matlab, to produce the function jacob0, which took the joint angles of the robot in, and
returned the jacobian.

The first function which used the jacobian was fwDiffKin, which calculated the velocity vector of
the end effector, given the joint angles and velocities of the robot, using forward differential
kinematics. It did so by calculating the jacobian, by using the jacob0 function, then multiplying
the jacobian by the joint velocities.

Next, the invDiffKin function was made. This calculated the joint velocities, given the joint
angles of the robot and velocity vector of the end effector, through the use of inverse differential

11

kinematics. It works by calculating the jacobian, using the jacob0 function, then inverting the
jacobian and multiplying it by the velocity vector of the end effector.

The final differential kinematics function was numInvKinAlg. This moved the robot to a certain
position by using an inverse differential kinematics- based approach, where the difference
between the desired position and the actual position, or approximately the position velocity, was
multiplied by the inverse jacobian, which resulted in the change in joint angles to move toward
the desired position. This would not get all the way there though, so the process was iterated
until the actual position was close to the desired position. There were a few challenges posed by
this system. The first was that desired position had to be checked to make sure that the robot
could reach it. Otherwise, the results could be unpredictable. The other problem, unique to the
specific application of the inverse kinematics based approach used in this lab, was that the
calculated change in joint angle had to be divided by three. There is no theoretical explanation as
to why this should work, but it was found that the system was unstable without this modification.

Figure 8. Numeric Inverse Kinematic Algorithm Flow Chart

2.2.5 Motion Planning and Trajectory Generation
Although the robot can easily be made from one point to another, there are two methods of
trajectory calculation which result in smoother motion- cubic polynomial and quintic polynomial
trajectory curve generation. These methods are very similar, except that the first uses a quintic
polynomial and does not account for acceleration, while the second uses a quintic polynomial
and accounts for acceleration.

12

The cubic polynomial trajectory solves the following equations to generate the appropriate
constants, so that the trajectory can be calculated at any given point:

a0 + a1 * t0 + a2 * t0
2 + a3 * t0

3 = q0
a1 + 2* a2 * t0 + 3 * a3 * t0

2 = v0
a0 + a1 * tf + a2 * tf

2 + a3 * tf
3 = qf

a1 + 2* a2 * tf + 3 * a3 * tf
2 = vf

The quintic polynomial trajectory solves the following equations to generate the appropriate
constants, so that the trajectory can be calculated at any given point:

a0 + a1 * t0 + a2 * t0
2 + a3 * t0

3 + a4 * t0
4 + a5 * t0

5 = q0
a1 + 2* a2 * t0 + 3 * a3 * t0

2 + 4 * a4 * t0
3 + 5 * a5 * t0

4 = v0
2 0a2 + 6 * a3 * t0 + 1 * a4 * t0

2 + 2 * a5 * t0
3 = a0

a0 + a1 * tf + a2 * tf
2 + a3 * tf

3 + a4 * tf
4 + a5 * tf

5 = qf
a1 + 2* a2 * tf + 3 * a3 * tf

2 + 4 * a4 * tf
3 + 5 * a5 * tf

4 = vf
2 0a2 + 6 * a3 * tf + 1 * a4 * tf

2 + 2 * a5 * tf
3 = af

2.2.6 Live Plotting
The position of the robot will be plotted in real time, in a 3D dimensional space. This will use
basic forward kinematics to calculate the position of each joint. Furthermore, each linkage will
be modeled using CAD software, resulting in something similar to the model in Figure 9.

Figure 9. CAD model of the robot arm

13

2.2.7 Computer Vision
In the lab, computer vision will be implemented, in order to identify the position and color of
objects within the workspace of the robot. To do this, an image, taken with the provided
webcam, will be segmented by the color of the objects, and then the centroids will be identified.
To segment the image properly, it will be segmented three times- one for each of the possible
colors of the objects- using color filtering. The specific color space will vary based on what
produces the most distinct section for the color being looked for. Once the image has been
segmented, it will be processed, to determine the centroids of all objects present. This will allow
for the location of each object to be found, using the mapping from pixel space to robot
workspace generated using the calibrate_camera function.

Figure 10. Image Processing Process

14

2.2.7.1 Camera Tracking
Once basic computer vision is created, it will be used to track the position of the object in real
time, so that if the object moves, the arm will follow it until it catches up. This will require a way
to specifically identify each object of interest in the work space, so that it consistently follows
one object. It will also require repeated calls of the computer vision function, which means that it
must be quick, or it will cause detrimental delays in the overall system.

2.2.8 Object Weighing
Forces sensing will also be implemented, in order to determine the difference between heavy and
light objects. To do this, the torque readings, transmitted to Matlab via the status command, will
be converted into force, compared to a threshold, and evaluated. The conversion from torque to
force can be calculated using the jacobian:

(q) Fτ T = J T
t

Where is the transpose of the torque vector, is the transpose of the jacobian, and isτ T (q)J T F t
the force vector. Thus, the force can be calculated using:

(q)F t = J −T
* τ T

Where is the inverse of the transpose of the jacobian. A function will be made which will(q)J −T
take the ADC values from the torque sensor, convert it into Newton meters, then multiply the
torques by the transpose of the jacobian.

2.2.9 Sorting
Considering that the objects will differ both by color and by weight, once the system specifies an
object, it should identify its color, determine where it is, pick it up and weight it. All this will
lead to either two solutions:

1. Sort the object based on its color and weight: Outside of the camera workspace, but
within the robots workspace, the objects will be placed accordingly as envisioned in
Figure 11.

2. Make a unique action for each object type: This can either be an action for a specific
color and an action for a specific weight, or an action for both a weight and color that is
uniquely different from the rest.

Assuming that the objects are not within the camera workspace, an example of how sorting could
occur depending on both the objects color and weight is shown in Figure 11 below. As seen,
there are yellow, green and blue objects with different weights specified by the color black
(plastic) and gold (copper). Figure 11 is an example of a sorting configuration the robot may
follow.

15

Figure 11. Example Sorting Configuration

3 Organization
Currently, the Matlab code is separated into three parts: the scripts, the functions, and the CSV
files. The scripts are demonstrations of the functions, and while they are what runs the process
that the robot goes though, they are not the majority of the work. The functions are the majority
of the work. Having most of the work contained within the functions means that the code is
much more reusable than if significant portions of code were written in the scripts. It also means
that the code is generally more organized than the long blocks which sometimes come up when
writing a single script to achieve a task. The final category is the CSV files. While these are not
code, nor did anyone explicitly write these, they are important, because they have all the data in a
form which can easily be processed by Matlab or outside programs. This means it is easy to
analyze the data.

3.1 Refactoring
Most of the code written was to make a function work as expected. If it proved functionality, it
was a enough to go to the next part. However, code that works does not qualify for optimal code.
A big problem in the current system is slow live-plotting. Removing repeated and unnecessary
code may result in faster processing speeds for live plotting and camera tracking, thus making
the code more optimal in its functionality, readability and speed.

16

