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1 INTRODUCTION 
The goal of the final project is to build an automated robotic sorting system, where the robot will 
localize certain objects within its workspace, pick them up, classify them based on weight and 
appearance, and release them within a predefined area.  
 
The objective of this document is to provide a deeper understanding of how the overall software 
is designed, and how the architecture of the software is structured to make the robot function as 
specified. This document will also specify what has been completed, what must be improved, 
and lastly what must be done to complete the project. The system design section will go in depth 
in describing how the robot will be capable of completing the goal of the project. 
 
1.1 The Robotic Manipulator 
The robot manipulator is a 3 degree of freedom (DoF) elbow manipulator with no prismatic 
joints. The base joint rotates about the Z axis, whilst the second and third joint rotate about the Y 
axis. This can be seen on Figure 1, which shows the robotic manipulator at home position. 
 

 
Figure 1. Home Position of Robotic Manipulator 

 
When the robot is at home position, the end effector position should be at a position of zero in 
the X, Y and Z plane. This will be further discussed in section 2.2.1 which will show how this 
feature was implemented. The given link lengths of the robot were given as 0.135, 0.175, and 
0.16928 meters for links one, two and three respectively, however they may be changed in order 
for more precise plotting for the stick model. 
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2 SYSTEM DESIGN 
This section will discuss the layout of the code. The code is divided into two categories: 
firmware, which runs on a Nucleo board, and Matlab code, which runs on a PC. 
 
2.1 Overall Software Design 
The firmware and Matlab code communicate with one another to make the robot achieve tasks. 
The following is an overview of how the system will work: 
 

 
Figure 2. System Diagram 

 
2.1.1 Firmware Programming 
The Nucleo, the microcontroller running the firmware, has two interfaces to the host computer: a 
virtual serial port, to update the firmware, and a HID port, to communicate with the host 
computer. The virtual serial port is rarely used, since the information the servers send and 
receive is enough to complete the lab. The HID port operates with the Nucleo as a USB slave 
device. The host computer sends packets to the microcontroller, which are then interpreted in the 
firmware, and either a packet is sent back to the computer or the robot completes some action. 
Using this system, the host computer can move the robot to any position within the working area. 
This allows the host computer to cause the robot to pick up the objects. 
 
2.1.2 Matlab Programming 
Matlab on the host computer does most of the calculations, as it is on a mid-end Intel i5. The i5 
is significantly faster than the Nucleo, since it is a high powered application processor. Section 
2.2 goes into further detail on the Matlab code. 
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2.2 System Architecture 
This section will discuss the subsystems of the code, including the theory behind the code as well 
as flowcharts and code snippets to show how the code works. 
 
2.2.1 Servers 
In order to communicate between the robot and the computer, several servers had to be 
implemented: the calibration server, the PID configuration server, the PID server, and the status 
server. All servers communicated with 16 byte words, where the first byte was the server ID for 
the specific server, so that all servers could be run at once. 
 
The PID and PID configuration were created by a third party, and existed before the course 
began. The first server created for the project was the status server. It sends an empty packet 
from Matlab to the robot when the status command is called. The robot then reads the position, 
velocity, and force values from the hardware, and sends the data back in a packet of the form: 
Server ID; Joint 0 position; Joint 0 velocity; Joint 0 force; Joint 1 position; Joint 1 velocity; Joint 
1 force; Joint 2 position; Joint 2 velocity; Joint 2 force; six empty values. The calibration server 
works whenever the calibrate command is called from Matlab. Matlab sends a packet with the 
position values of the arm. The firmware would then update the home position, by subtracting 
the values sent to it from the previous home values. 
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Figure 3. Status server and Calibration server operational diagrams 

 
In this lab, the status server will have to be updated to average the values of the torque sensor. 
This is because the torque sensor is prone to inaccuracies. This will be accomplished by reading 
the value from the force sensor several times in the firmware when the status command is called, 
then averaging the readings. This will be done in the firmware and not the Matlab code because 
Matlab will take significantly longer to do call several status packets and take the average than 
using the firmware would. 
 
2.2.2 PID Tuning 
In previous labs the PID was tuned by looking at the motion of the robot alone. However, in this 
lab, external forces and torques have to be considered in order for the robot to have smooth 
transitions between different positions in the workspace. 
 
To take the weights into account, either the firmware code on the PID controller has to change to 
compensate gravity and torque at the end effector, or seperate gains will be calculated for the 
different weights that might be in the system. 
 
To get the most accurate results, the following steps will be followed to tune the PID: 
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1. Set all the gains to 0 
2. Increase the Proportional Gain KP until there is some overshoot (10-20% overshoot) 
3. Increase the Integral Gain Ki until the waveform shows it is going to steady state 
4. Increase the Derivative Gain Kd until oscillation is removed, and the step response is very 

stable 
5. Tweak the gains if the desired response has not been achieved 

 
In order to get better results, various motions will be tested and their position trajectories will be 
plotted. In that case, every time a gain for the PID control is changed, it can be seen throughout 
each movement how that change is affecting it. 
 
2.2.3 Position Kinematics 
In order to obtain the relationship between the position and joint angles, both forward and 
inverse kinematics had to be implemented. By drawing out a reference frame, and figuring out 
the DH parameters of the elbow manipulator (See Figure 4 and Table 1 respectively), given a set 
of joint angles the position of each joint could be found using forward kinematics. 
 

 
Figure 4. Reference Frame of Elbow Manipulator 
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Table 1. DH parameters of Elbow Manipulator 

Links θ α a d 

1 θ1 90° 0 L1 

2 θ2 0 L2 0 

3 θ3 - 90° 0 L3 0 

 
The math can be seen within the fwkin3001 function below where transformation matrices are 
used to obtain the position of each joint in the workspace. The getPosV function gets the position 
vector of the transformation matrix which is the first three rows on the 4th column. 
 

 
Figure 5. Position Forward Kinematics Implementation 

 
However, to move the robot to a specific position in the workspace, the orientation has to be 
found. This is done through inverse position kinematics using a geometric approach. Looking at 
the ikin3001 function and Figure 6, the joint angles are given by the following equations: 
 

tan2(P , )θ0 = a Y P X  
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Figure 6. Full Drawing of the Inverse Kinematics 

 
Another approach to solve for the inverse kinematics would have been to use the symbolic end 
effector position obtained from the transformation matrices and solve for the joint angles. 
However the geometric approach was chosen due to its simplicity. To make sure that the 
positions passed into the inverse kinematics function were within the workspace, error cases 
were included as seen in Figure 7. This ensured that the robot would not be sent to place it could 
not reach. 
 

 
Figure 7. Error Cases inside the Inverse Kinematics Function 
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2.2.4 Differential Kinematics 
There are several Matlab functions which utilize differential kinematics: fwDiffKin, invDiffKin, 
and numInvKinAlg. All of these depend on the jacobian, which is generated using the jacob0 
function. 
 
The jacobian is a matrix which represents the relationship between the joint variables of the 
robot and the position and orientation of the end effector. It has the form:  

 
 

In order to calculate this in Matlab, the jacobian is broken into two parts: the position jacobian 
and the orientation jacobian. These are related to the jacobian as follows: 

(q)  J = J (q); J (q)[ p  o ]  
 

These can be represented by the following equations: 
(q)  Jp = ... â p ) ...[ i × ( e − pi ]   

(q) ... ξâ  ...]Jo = [ i  
 

Where  is the 3rd column of the rotation matrix from the transformation matrix of joint i,  isâi pi  
the position of joint i, and  is the position of the end effector, and  is 1, because this onlype ξ  
needs to consider rotational joints. Thus, using the DH matrices derived in lab 2, a function to 
calculate the Jacobian based on the joint angles of the robot was created. For the base joint the 

is [0;0;1] column vector, whilst the position  is at [0;0;0]. For the second and third joint,â0 p0  
transformation matrices and are used to determine and . All of this was implementedT 1

0 T 2
0 âi pi  

in Matlab, to produce the function jacob0, which took the joint angles of the robot in, and 
returned the jacobian. 
 
The first function which used the jacobian was fwDiffKin, which calculated the velocity vector of 
the end effector, given the joint angles and velocities of the robot, using forward differential 
kinematics. It did so by calculating the jacobian, by using the jacob0 function, then multiplying 
the jacobian by the joint velocities. 
 
Next, the invDiffKin function was made. This calculated the joint velocities, given the joint 
angles of the robot and velocity vector of the end effector, through the use of inverse differential 
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kinematics. It works by calculating the jacobian, using the jacob0 function, then inverting the 
jacobian and multiplying it by the velocity vector of the end effector. 
 
The final differential kinematics function was numInvKinAlg. This moved the robot to a certain 
position by using an inverse differential kinematics- based approach, where the difference 
between the desired position and the actual position, or approximately the position velocity, was 
multiplied by the inverse jacobian, which resulted in the change in joint angles to move toward 
the desired position. This would not get all the way there though, so the process was iterated 
until the actual position was close to the desired position. There were a few challenges posed by 
this system. The first was that desired position had to be checked to make sure that the robot 
could reach it. Otherwise, the results could be unpredictable. The other problem, unique to the 
specific application of the inverse kinematics based approach used in this lab, was that the 
calculated change in joint angle had to be divided by three. There is no theoretical explanation as 
to why this should work, but it was found that the system was unstable without this modification. 
 

 
Figure 8. Numeric Inverse Kinematic Algorithm Flow Chart 

 
2.2.5 Motion Planning and Trajectory Generation 
Although the robot can easily be made from one point to another, there are two methods of 
trajectory calculation which result in smoother motion- cubic polynomial and quintic polynomial 
trajectory curve generation. These methods are very similar, except that the first uses a quintic 
polynomial and does not account for acceleration, while the second uses a quintic polynomial 
and accounts for acceleration. 
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The cubic polynomial trajectory solves the following equations to generate the appropriate 
constants, so that the trajectory can be calculated at any given point: 

a0 + a1 * t0 + a2 * t0
2 + a3 * t0

3 = q0  
a1 + 2* a2 * t0 + 3 * a3 * t0

2 = v0  
a0 + a1 * tf + a2 * tf

2 + a3 * tf
3 = qf  

a1 + 2* a2 * tf + 3 * a3 * tf
2 = vf  

 
The quintic polynomial trajectory solves the following equations to generate the appropriate 
constants, so that the trajectory can be calculated at any given point: 

a0 + a1 * t0 + a2 * t0
2 + a3 * t0

3 + a4 * t0
4 + a5 * t0

5 = q0  
a1 + 2* a2 * t0 + 3 * a3 * t0

2 + 4 * a4 * t0
3 + 5 * a5 * t0

4 = v0  
2 0a2 + 6 * a3 * t0 + 1 * a4 * t0

2 + 2 * a5 * t0
3 = a0  

a0 + a1 * tf + a2 * tf
2 + a3 * tf

3 + a4 * tf
4 + a5 * tf

5 = qf  
a1 + 2* a2 * tf + 3 * a3 * tf

2 + 4 * a4 * tf
3 + 5 * a5 * tf

4 = vf  
2 0a2 + 6 * a3 * tf + 1 * a4 * tf

2 + 2 * a5 * tf
3 = af  

 
2.2.6 Live Plotting 
The position of the robot will be plotted in real time, in a 3D dimensional space. This will use 
basic forward kinematics to calculate the position of each joint. Furthermore, each linkage will 
be modeled using CAD software, resulting in something similar to the model in Figure 9.  
 

 
Figure 9. CAD model of the robot arm 
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2.2.7 Computer Vision 
In the lab, computer vision will be implemented, in order to identify the position and color of 
objects within the workspace of the robot. To do this, an image, taken with the provided 
webcam, will be segmented by the color of the objects, and then the centroids will be identified. 
To segment the image properly, it will be segmented three times- one for each of the possible 
colors of the objects- using color filtering. The specific color space will vary based on what 
produces the most distinct section for the color being looked for. Once the image has been 
segmented, it will be processed, to determine the centroids of all objects present. This will allow 
for the location of each object to be found, using the mapping from pixel space to robot 
workspace generated using the calibrate_camera function. 
 

 
Figure 10. Image Processing Process 
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2.2.7.1 Camera Tracking 
Once basic computer vision is created, it will be used to track the position of the object in real 
time, so that if the object moves, the arm will follow it until it catches up. This will require a way 
to specifically identify each object of interest in the work space, so that it consistently follows 
one object. It will also require repeated calls of the computer vision function, which means that it 
must be quick, or it will cause detrimental delays in the overall system. 
 
2.2.8 Object Weighing 
Forces sensing will also be implemented, in order to determine the difference between heavy and 
light objects. To do this, the torque readings, transmitted to Matlab via the status command, will 
be converted into force, compared to a threshold, and evaluated. The conversion from torque to 
force can be calculated using the jacobian: 

(q) Fτ T = J T
t  

 
Where  is the transpose of the torque vector,  is the transpose of the jacobian, and  isτ T (q)J T F t  
the force vector. Thus, the force can be calculated using: 

(q)F t = J −T
* τ T  

 
Where  is the inverse of the transpose of the jacobian. A function will be made which will(q)J −T  
take the ADC values from the torque sensor, convert it into Newton meters, then multiply the 
torques by the transpose of the jacobian. 
 
2.2.9 Sorting 
Considering that the objects will differ both by color and by weight, once the system specifies an 
object, it should identify its color, determine where it is, pick it up and weight it. All this will 
lead to either two solutions: 

1. Sort the object based on its color and weight: Outside of the camera workspace, but 
within the robots workspace, the objects will be placed accordingly as envisioned in 
Figure 11. 

2. Make a unique action for each object type: This can either be an action for a specific 
color and an action for a specific weight, or an action for both a weight and color that is 
uniquely different from the rest. 

 
Assuming that the objects are not within the camera workspace, an example of how sorting could 
occur depending on both the objects color and weight is shown in Figure 11 below. As seen, 
there are yellow, green and blue objects with different weights specified by the color black 
(plastic) and gold (copper). Figure 11 is an example of a sorting configuration the robot may 
follow. 
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Figure 11. Example Sorting Configuration 

 

3 Organization 
Currently, the Matlab code is separated into three parts: the scripts, the functions, and the CSV 
files. The scripts are demonstrations of the functions, and while they are what runs the process 
that the robot goes though, they are not the majority of the work. The functions are the majority 
of the work. Having most of the work contained within the functions means that the code is 
much more reusable than if significant portions of code were written in the scripts. It also means 
that the code is generally more organized than the long blocks which sometimes come up when 
writing a single script to achieve a task. The final category is the CSV files. While these are not 
code, nor did anyone explicitly write these, they are important, because they have all the data in a 
form which can easily be processed by Matlab or outside programs. This means it is easy to 
analyze the data. 
 
3.1 Refactoring 
Most of the code written was to make a function work as expected. If it proved functionality, it 
was a enough to go to the next part. However, code that works does not qualify for optimal code. 
A big problem in the current system is slow live-plotting. Removing repeated and unnecessary 
code may result in faster processing speeds for live plotting and camera tracking, thus making 
the code more optimal in its functionality, readability and speed. 
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