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This lab demonstrated the advanced concepts of computer 

vision by tracking and manipulating of objects of various colors 

and densities. Matlab was used to process images taken by a 

PlayStation Eye web camera and translate those images into 

instructions for the robot, as well as interpret data from the 

strain gauges for force sensing at the end effector. Although 

vision related decisions were functionally accurate, force related 

decisions were inconsistent and inaccurate, thus the robot was 

unable to sort by different weights.  Overall, apart from the force 

measurements, the robot was able to automatically identify an 

object based on its color, reach out for that object, pick it up, and 

sort it based on a combination of its color and weight. 

Keywords—automation, computer vision, robotic manipulator, 

sorting by color and weight 

I. INTRODUCTION (HEADING 1) 

This project accumulates everything that has been 

implemented so far in the robotic manipulator system. In the 

previous lab, the Jacobian was calculated, as well as the 

forward and inverse velocity kinematics of the robotic arm, 

which allowed to identify the singularities of the arm. Finally, a 

numeric solution to the inverse position kinematics problem 

was implemented which utilized Taylor series approximations 

to reach a certain place in the workspace. 

Building from the previous labs, this lab investigates an 

automated robotic sorting system, where the robot has to 

localize certain objects within its workspace using a camera, 

pick them up, classify them based on weight and/or 

appearance, and release them within a predefined area. The 

objectives for this lab are as follow: 

• Use vision to identify and localize objects 

• Control the robot’s end effector 

• Measure and display applied force vectors at the end 

effector 

• Sort different objects base on their weight and color 

This lab has three main sections: (1) creating a force 

sensing system, (2) adding vision based tracking, and (3) 

creating an automated sorting system to sort objects in the 

workspace by weight and color. Finally, using the numeric 

inverse kinematic algorithm implemented from the previous 

lab, a dynamic camera tracking was implemented to follow the 

object in the camera workspace in real-time. 

II. METHODOLOGY 

This section will go through the steps that were taken to 

complete this lab. It built on previous labs by implementing 

force sensing at the end effector through use of the strain 

gauges. It also added vision-based tracking, and motion. 

Finally, all of these parts were combined to create an 

autonomous sorting system which could organize objects in 

the workspace based on the color and weight of the object. 

A. Experimental Material 

• A computer running Ubuntu 

• An ST Nucleo-144 (STM32F746) development 

board with ARM microcontroller 

• An RRR arm, controlled by the Nucleo board 

• A webcam, mounted above the workspace 

• 2 x banana connector to banana connector cables 

• 2 x micro-USB to USB cables 

B. Force Sensing 

In order to determine the weight of an object picked up by 
the end effector, the force at the end effector needed to be 
calculated. To do this, the torque at each joint was measured by 
getting the status of the robot. Once measured, the torques 
were multiplied by a manipulated jacobian matrix, to give the 
force vector. 

1) Average Torque Readings 

In order to get an accurate torque reading, the values 

detected by the sensors needed to be averaged to reduce noise. 

This was done in the firmware, since it was faster to have the 

firmware read the torque multiple times and then average it 

rather than having the Matlab call several packets. The 

averaging was implemented by summing the ADC readings 

for a hundred readings, then dividing the readings by a 

hundred, whenever the status server was polled. To increase 

the accuracy of the torque readings, one hundred data points 

were taken and averaged. Any readings with significant error 

would have a marginal effect on the final torque value. 

2) Calibrate the Joint Torque Sensors 

Next, the torque sensor readings had to be changed from 

ADC values into actual torque values. Given a calibration 
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curve, a formula to calculate the torques of each joint was 

derived as seen below:  

 τ=(x-y0)/k [Nm] 

where τ is the torque, x is the ADC reading, y0 is the offset, 

and k is the scaling factor. K was set to approximately 178.5, 

and y0 was the reading of the ADC when there was no torque 

on the sensor, which was different for each sensor. To find y0, 

the robot was placed in an overhead configuration, and the 

raw torque, in ADC counts, was determined to be: y0 = [515; 

486; 507] for the first, second and third joint in the robotic 

manipulator. 

3) Calculate the Force at the End Effector 

Once the torques were known, the force on the end 

effector could be calculated. By calculating the statics 

(statics3001 function) for the system, the following relation 

was derived: 

 F=Jp
-T(q)* τ 

Where F is the force vector, Jp
-T(q) is the inverted transpose of 

the Jacobian at joint angles q, and τ is a matrix of the torques 

at each joint. The jacobian was calculated using the jacob0 

function derived from the previous lab, while the torques at 

each joint were found as described in previous sections. With 

these values, the force vector was calculated. 

C. Vision-Based Tracking 

Before this lab, a camera was attached to the workspace, 

so that objects within the workspace could be identified, 

located, and eventually grabbed by the robot. The camera was 

set up, so that locations within the camera frame could be 

transformed to the workspace of the robot. A function was 

created to locate certain objects by color, and the robot was 

made to move to the location of the object. Finally, a dynamic 

version of object tracking was implemented, which could 

reach for an object, even as the object moved around the 

workspace. 

1) Camera-Robot Setup 

The change from camera coordinates to workspace 

coordinates largely depended on a provided function called 

mn2xy. First, the camera had to be calibrated using the 

calibrate_camera function. This function took several points 

from the image that were provided by the user, correlated it 

with points in the workspace, and created a transformation. By 

using the mn2xy function with the calibrated pixels of the 

calibrated coordinate system, it could be given points within 

the camera coordinates, and would return points in the 

workspace coordinates of the robot. 

However, the results from mn2xy were not fully 

accurate, so another function was created that tweaked the 

values given by mn2xy. It divided the workspace into four 

quadrants, and depending on what quadrant the object was in, 

the x and y values were scaled and offset by differing 

amounts. This provided enough precision to successfully 

locate objects in the workspace. 

Fig. 1. Transforming Centroid Location from Image pixels to Robot 

Coordinate System 

 
2) Object Localization 

Next, the objects had to be identified within the image. 

This was achieved by filtering the image by specific color, 

then identifying the centers of the circles representing the 

objects. 

Filtering was done for each individual color: blue, green, 

and yellow. Each color was filtered in whatever color space 

had the most distinct representation of the color of the object. 

For all cases, blue, green, and yellow, a Lab Color Space was 

utilized for filtering each color as it provided the best results 

under the specific environmental conditions. The filter 

produced a binary image, where the objects were filled as 

white and the rest of the space was black. 

 

Next, the centers of each object in the workspace were 

found. This was achieved by going through each of the three 

binary images produced by color filtering, eroding, and 

morphing, and then using the imfindcircles function the 

centers and radii of the objects were identified. For each 

object, a n by 2 matrix was returned, where n is the number of 

objects of a specific color found in the workspace. These 

centers were then passed into the program to be used later in 

moving towards the objects. The centers of each object located 

within the image was represented using an m by n location, 

where m and n are pixels in the image of row and column 

respectively. Using the mn2xy function, the centroids of each 

object in the workspace was returned in terms of the robot 

coordinate system. 

Since the camera should only find objects within the 

robots wooden countertop, a boolean function inWood was 

written to return whether a specific coordinate was within the 

robot platform workspace. 

3) Reach for an Object 

Next, the robot was made to move to one of the objects 

found using the object localization function objLoc. This was 

done by passing the x and y values that the localization 

function returned for a specific object, along with a constant z 

value, to a movement function. This movement function used 



a quintic trajectory to move from the current position to the 

desired position. 

4) Dynamic Object Tracking 

As a bonus, a script DynamicLocObj.m was created which 

repeatedly checked the position of the object as the robot 

moved towards it. This used a modified version of the 

jacobian-based numeric solution to the inverse kinematics 

problem implemented in lab 4. It operated by multiplying the 

inverse Jacobian by the desired change in position, or the 

difference between the desired position and the current 

position. This gave the approximate change in joint angles 

needed to move to the desired position. The difference for this 

lab was that the desired position was found from the object 

localization function, so that every iteration of the algorithm 

updated the location of the object, if it changed, and if it did 

not move, the arm simply moved to a more accurate position. 

D. Automated Sorting System 

The final step of the lab was to make a system which could 

automatically sort objects within the workspace. This required 

a few additions to the system: gripper control, object weight 

sensing, and object sorting. 

1) Control the Gripper 

To control the gripper, an additional server had to be 

created in the firmware as seen in figure 2. When it received a 

packet, it would open the gripper if the first term of the packet 

was a 2, and would close it otherwise. Additionally, the servo 

motor had to be declared in the code, so that it could be 

controlled. Then, in Matlab, a function was created to 

communicate with the firmware server. It would send a 

packet, telling the servo to open or close based on a boolean 

input to the function. 

2) Weigh Objects 

Object weighing used the force detection at the end 

effector, implemented in section 2.1. It found the z magnitude 

of the force at the end effector and checked to see if it was 

over or under a certain threshold. If it was greater, the object 

was categorized as lightweight (since the force would be in the 

negative z), and otherwise, the object was categorized as 

heavy. 

Fig. 2. Gripper Server in Firmware to actuate the gripper servo 

 
 

 

Fig. 3. Example Color and Weight Sorting System 

 
3) Pick and Sort Objects 

Next, a sorting function had to be created, so that the robot 

would know where to move the object in the automated 

sorting system. This took the color and weight of the object, 

and assigned each combination of color and weight to a 

specific location off of the board, but still within the reachable 

space of the robot. figure 3 shows an example of how the 

items were sorted in the system implemented. 

4) Automated Sorting System 

With motion to the location of an object, gripper control, 

object weight categorization, and object sorting, the final 

automated sorting system was implemented. Figure 4 shows 

the general program flow, where blue rectangles are processes, 

yellow rectangles are decision points, and solid arrows 

represent the code path. 

Fig. 4. Flow Diagram of Automated Sorting System 

 



The “Process Image” procedure was the object localization 

function, described in section 2.2.2. This passed arrays of the 

blue, green, and yellow arrays to a function which removed 

objects that were not on the wood from the arrays. These 

modified arrays were passed to a function which would exit 

the loop if there were no objects in the arrays, or would return 

the position of an object if there were still objects in the 

arrays. The position was then used to move to a point slightly 

above the object. Then, the arm descended, the gripper 

grasped the object, and the arm lifted back up. Next, the object 

was weighed, using the function described in section 2.3.2, 

and the weight category, along with the color, was used to find 

where to put the object. Then the object was moved there, a 

new image was taken, and the code looped back to 

organization check. 

III. RESULTS 

A. Force Sensing 

The force sensing for the robot did not work because of 

reading inaccuracies and a failure to account for the weight of 

the robot in the statics calculation. Data was gathered to find 

the errors and their possible causes, and is in Appendix A, 

along with the procedure used to gather the data. 

1) Average Torque Readings 

Averaging the torque readings successfully reduced the 

noise of the torque sensor data. It reduced the standard 

deviation of the torque readings, taken over a 10 second 

period, to less than 0.005 Nm in most cases. This is excellent, 

since this would be less than a 0.05 N standard deviation for a 

force applied directly at the end effector. 

2) Calibrate the Joint Torque Sensors 

The joint torque sensors were supposed to allow the 

computer to read the exact torques being applied. However, 

the calibration of the torque sensors did not account for the 

weight of the robot, thus it was not properly offset at each 

point. Also, the calibration process was challenging, as it 

required moving the robot into a configuration where no 

torque would be exerted at any joint, and any slight deviance 

from that configuration could cause errors in the calibration. 

Thus, the calibration was not very accurate, and the torque 

reading at some points exceeded 0.5 Nm, even with no force 

on the end effector. 

3) Calculate the Force at the End Effector 

The force calculation at the end effector was also 

inaccurate. The standard deviation of the force calculated in a 

certain configuration exceeded one newton, while the 

measured difference between the light and heavy object was 

frequently less than 0.1 N. Furthermore, the measured forces 

for the same object differed dramatically depending on the 

configuration of the robot. 

Despite the errors with the readings, a 3D plot was created, 

which represented the arm as a set of lines, and an arrow 

representing the force vector positioned at the end effector, as 

shown in figure 5. The arrow moved and scaled as the 

calculated force moved and changed magnitude. 

 

Fig. 5. Three Dimensional Plot of the Arm and Force Vector 

 

B. Vision Based Tracking 

The initial implementation of the vision tracking system 

was not accurate enough to grab an object successfully, so 

additional adjustments were made. 

1) Camera-Robot Setup 

In the camera setup, an additional function was added, 

because the provided function did not give a sufficiently 

accurate position. Though the additional function increased 

the accuracy, it did occasionally missed objects in the 

workspace. However, the resulting values were accurate 

enough to demonstrate the functionality of the system. 

2) Object Localization 

The objLoc function is a function that identifies specific 

objects based on color (blue, green and yellow) and returns 

their corresponding centroids in x and y values of the robot 

coordinate system. The object location function takes in two 

parameters: a snapshot from the camera camFrame and an 

image figure imPlot in order to redraw the image on the figure 

without creating a new plot each time. To completely 

understand the results of the object localization function, the 

steps to filtering, and finding the centroids will be explained, 

with their results. Figure 6 represents the original image that 

was sent through to the function. As seen by that snapshot, 

there are 6 objects, with 3 distinct colors, and 2 different 

weights (black = light, gold = heavy). 

Fig. 6. Original Image Captured for Object Localization 

 



Through every iteration of the objLoc function, a new 

snapshot has to be taken from the camera to update the 

location of the centroids in the workspace. Once completed, 

the program separately filters out individual colors from the 

workspace using a function generated by the image 

segmentation app in Matlab that utilizes the LAB color space. 

Each type of color space was considered, however, the LAB 

color space returned the best filtering of the colors due to the 

light intensity changes in the lab environment. For every 

individual color filtering, after obtaining the color-filtered 

image, it then removes all connected components that have 

fewer than a specified number of pixels from that binary 

image. The number of pixels used was 400, as it was expected 

that the whole centroids would be located. 

After removing all the noise in the binary image, the 

second step was to completely fill enclosed objects with white 

space using the imfill function. Sometimes under certain light 

sources, the filtering of a color could work on most parts of 

that object. Other parts would not be recognized by the 

filtering mask as it would be either too dark or too light. 

Finally, once each circle was filled, due to the effects of noise 

removing, some circles may be smaller than expected. In order 

to fix this, using the bwmorph function with a thicken 

parameter, it would thicken objects by adding pixels to the 

exterior of objects. 

These three steps in segmenting an image resulted in the 

binary images seen in figures 7 through 9.  

Fig. 7. Blue Binary Filtered Image 

 

Fig. 8. Green Binary Filtered Image 

 

Fig. 9. Yellow Binary Filtered Image 

 

Fig. 10. Final Binary Filtered Image 

 
Adding all of those images together results in binary image 

of the original snapshot. As seen in figure 10, each object 

closely resembles a circle, and is relatively close to the 

original image. 

Finally, for all three images in figures 7 through 9 that 

filtered out each color, the centroids of each object were found 

using the imfindcircles function with a parameter that would 

only search for circles in a specific range. This function 

returns an array of matrices that contains the centers and the 

radius of each circle found. Once the centroids are located, 

and the radiuses are calculated, the colored objects in the 

original image are overlapped with a distinct colored 

perimeter to show that the objects were found in the cameras 

workspace. As seen in figure 11, the original image has each 

colored object marked with a specific colored-perimeter. 

Fig. 11. Final Binary Filtered Image 

 



After changing the pixel values of the centroids to x and y 

values corresponding to the robot workspace, their centroids 

are outputted. The following points correspond to filtering of 

the image in figure 6: 

B = [(-0.0509, 0.0274) (0.0593, -0.0577)];  

Y = [(0.0679, 0.0191) (-0.0446, 0.1026)];  

G = [(-0.0303, -0.0507) (0.0616, 0.0911)]; 

This clearly shows that for each color, two objects were 

found in a certain position inside the robot’s workspace. 

3) Reach for an Object 

Once the setup was modified, the robot was able to 

successfully reach for an object most of the time. In the 

process of accomplishing this, several issues were fixed. First, 

several functions were not receiving arguments in the right 

units or frames of references. This was because several 

functions were not created with the convenience of using the 

whole system in mind. Also, the PID constants needed to be 

modified. This was a minor issue in past labs, but since the 

robot needed to be able to hold objects and move precisely, 

the issue was fixed. However, these issues were all dealt with 

by the end of the lab. 

4) Dynamic Object Tracking 

The dynamic object tracking was also able to successfully 

reach for an object most of the time. However, the system had 

two issues. First, the loop was rather slow, which meant that 

the response time of the robot was not quick enough to be 

used for many practical applications. The other issues was that 

the robot would sometimes move between the object and the 

camera, so that the robot would not know where to move. 

However, the function successfully demonstrated the basic 

functionality of the concept. 

C. Automated Sorting System 

When creating the automated sorting system, no new 

errors were introduced to the system. However, since this 

system included work from all the other sections, the errors 

mentioned previously affected the functionality of the sorting 

system. 

1) Control the Gripper 

The gripper code worked adequately for the final version 

of the lab. When it was initially created, however, it did not, 

because the example code provided, which was used, had a 

delay greater than the delay that the packet processor 

tolerated. Once that was resolved, the physical gripper was 

turned past the safe limit for it, and thus it could not close 

fully. However, since this was not noticed for a while, the 

gripper was damaged and had to be replaced. Once that was 

done, and the code fixed so that it would not happen again, the 

gripper worked properly. 

2) Weigh Objects 

Weighing the objects was not successful, because the force 

sensing system did not work, as described in section 3.1. This 

is because the weight categorizing function depended on the 

force calculation function. In the end, the weight 

categorization was effectively random. 

 

 

3) Pick and Sort Objects 

The pick and sort system worked most of the time by the 

end of the lab. It was not completely accurate, since it 

inherited the errors that the reach for an object function had. 

However, it was sufficient to demonstrate the concepts of the 

lab, and could be further refined if needed and time was 

available. 

4) Automate Sorting System 

The automated sorting system inherited the errors of the 

weight categorization and pick and sort functions. Thus, it 

could do everything it intended to do most of the time, except 

for weigh the objects, which it never did accurately. 

IV. DISCUSION 

A. Force Sensing 

The force sensing portion of this lab did not work. This is 

because the sensor readings did not provide accurate enough 

data to correctly calculate the force, and because the weight of 

the robot was not taken into account when calculating the 

statics equation. 

The torque sensor readings generally had a standard 

deviation of less than 0.005 Nm. While this seems sufficient 

for the purposes of this lab, it was not. The standard deviation 

of the force was frequently less than 0.05 N, but in some cases 

exceeded 0.1 N. This was problematic, because the measured 

difference between the light and heavy objects was less than 

0.1 N in many cases. Thus, more accurate torque sensing 

would have needed to precisely measure the weight of the 

robot. 

Also, the statics calculation did not account for the weight 

of the robot. This meant that the robot would calculate very 

different forces for the same object, depending on the 

configuration of the robot. Therefore, for accurate readings 

throughout the workspace, the statics equations would have to 

be recalculated. 

B. Vision-Based Tracking 

There were two issues common to all systems which used 

vision tracking. The first was improper conversion from the 

camera to the reference frame of the robot. A function was 

provided which was supposed to do this transformation. 

However, it did not work properly, so another function was 

added to compensate for the remaining error. However, it 

would have been better to modify the provided function to 

correctly do all conversions, since it would have been easier to 

follow. This was not done because the initial function was 

rather difficult to understand, so it seemed safer not to modify 

that which was not understood. 

The function created to compensate for this error could 

have been improved as well. It divided the space into 

quadrants, and modified the positions depending on what 

quadrant it was in. However, this did not deal with the 

underlying issue of why it was distorted. It may have been that 

perspective was not accounted for correctly, or that the lens of 

the camera created a distortion. Since the cause was not 

known, though, quadrants dealt well enough with the issue. 

Thus, in future work, it may be helpful to find the source of 



the distortion, so that more accurate equations can be used to 

change the position values. 

The second issue was that the conversion from the camera 

to the workspace created an origin in front of the robot, while 

the reference frame for controlling the robot had an origin at 

the base of the robot. This lead to a great deal of confusion 

when trying to plan the motion of the robot. Functions were 

created to deal with this issue, but were not put in the best 

place in the code. Had the function for translating from the 

camera to the workspace also moved the origin to the base of 

the robot, the whole problem would have been dealt with in 

one location, rather than needing to insert the transformation 

functions throughout the code. 

1) Dynamic Object Tracking 

The dynamic object tracking system had two additional 

issues: it operated slowly, and sometimes the arm would move 

between the camera and object, confusing the system. 

The first issue was probably caused by inefficient code, 

most likely the vision processing system. However, this is not 

surprising, since vision processing requires many calculations. 

Thus, a possible solution would be to reduce the amount of 

code that will run. This means can be two things: removing 

unnecessary code, and cropping the image, so that fewer 

values are processed. Either, or both, should help speed the 

system up. 

The other issue is more complicated, because the system 

needs to be able to distinguish between the arm obscuring an 

object and an object being removed. This could be solved by 

adding another camera, to see the blind spots created by the 

robot motion. However, this would be more expensive and 

complicated, and could make the code run slower. Thus, this 

solution should only be implemented if absolutely necessary. 

C. Automated Sorting System 

The final automated sorting system introduced no new 

errors. However, it inherited errors from previous sections, 

which meant that it did not always work. It still operated 

consistently enough to demonstrate the functionality of the 

system. 

V. CONCLUSION 

This lab demonstrated knowledge of statics, computer 

vision systems, and robotic systems by implementing a force 

sensing system, vision-based object tracking, and an 

autonomous object sorting system. Throughout the lab, 

concepts from older labs were used as well, such as motion 

planning and trajectory generation, position and differential 

kinematics, and coding practices.  

Even though there were a issues through the course of this 

lab that set us back (inconsistent and inaccurate readings from 

the load cell and force sensing), it wasn’t enough to affect the 

results of the lab. Nevertheless, we were able to get everything 

complete, and our hardships helped us to further understand 

and think about new ways to get around the problem. A 

suggested solution would have been to use centripetal forces 

and angular velocities to calculate the forces at the end 

effector. However, there wasn’t enough time to implement this 

feature to the robot. 

APPENDIX A: FORCE TESTING RESULTS 

Due to problems with the force testing results, tests were 

run to see where the issues arose. To do this, force readings 

were taken in multiple positions while holding either nothing, 

a light object, or a heavy object. For each position and weight, 

the torque and force readings were recorded in a loop for ten 

seconds. After the loop ran, statistics were calculated from the 

data: the minimum, mean, maximum, and the standard 

deviation. All of the statistics are recorded below, along with 

images of the robot configurations: 

Fig. 12. Position 1 

 

TABLE I.  NO OBJECT, POSITION 1 

 
Torque Readings 

J0 Torque J1 Torque J2 Torque 

Min 0.1737 0.1849 0.0392 

Mean 0.1799 0.199 0.0448 

Max 0.1849 0.2073 0.0504 

Std 0.0021 0.0037 0.0023 

 
Force Readings 

X Force Y Force Z Force 

Min -0.3072 1.0505 -0.9282 

Mean -0.2703 1.0883 -0.8807 

Max -0.2327 1.1206 -0.7686 

Std 0.0143 0.0127 0.0278 

TABLE II.  LIGHT OBJECT, POSITION 1 

 
Torque Readings 

J0 Torque J1 Torque J2 Torque 

Min 0.1681 0.1961 0.0224 

Mean 0.179 0.2061 0.0285 

Max 0.1849 0.2129 0.0448 

Std 0.0023 0.0038 0.0039 



 
Force Readings 

X Force Y Force Z Force 

Min -0.2728 1.0149 -1.0861 

Mean -0.177 1.0811 -1.0129 

Max -0.1393 1.1171 -0.8645 

Std 0.0226 0.0139 0.0366 

TABLE III.  HEAVY OBJECT, POSITION 1 

 
Torque Readings 

J0 Torque J1 Torque J2 Torque 

Min 0.1625 0.1961 0.0448 

Mean 0.1706 0.207 0.1022 

Max 0.2185 0.2185 0.112 

Std 0.0075 0.0053 0.0086 

 
Force Readings 

X Force Y Force Z Force 

Min -0.6796 0.9679 -0.8615 

Mean -0.6233 1.0152 -0.5955 

Max -0.2914 1.2958 -0.5076 

Std 0.0492 0.0438 0.0555 

Fig. 13. Position 2 

 

TABLE IV.  NO OBJECT, POSITION 2 

 
Torque Readings 

J0 Torque J1 Torque J2 Torque 

Min 0.1344 -0.028 0 

Mean 0.14 0.4003 0.0069 

Max 0.1681 0.4146 0.0896 

Std 0.0043 0.0573 0.0112 

 
Force Readings 

X Force Y Force Z Force 

Min -2.0683 0.5424 -1.1944 

Mean -1.9891 0.5662 -1.1061 

Max 0.4109 0.6682 0.8534 

Std 0.321 0.0159 0.2623 

TABLE V.  LIGHT OBJECT, POSITION 2 

 
Torque Readings 

J0 Torque J1 Torque J2 Torque 

Min 0.1344 0.3978 0 

Mean 0.1376 0.4014 0.0051 

Max 0.1401 0.4034 0.0112 

Std 0.0028 0.0027 0.002 

 
Force Readings 

X Force Y Force Z Force 

Min -2.0257 0.5427 -1.1841 

Mean -1.9995 0.5568 -1.124 

Max -1.9648 0.5698 -1.0585 

Std 0.0157 0.0113 0.0223 

TABLE VI.  HEAVY OBJECT, POSITION 2 

 
Torque Readings 

J0 Torque J1 Torque J2 Torque 

Min 0.1232 0.3641 0 

Mean 0.1238 0.3685 0.0035 

Max 0.1401 0.3922 0.0112 

Std 0.0025 0.0048 0.0033 

 
Force Readings 

X Force Y Force Z Force 

Min -1.959 0.4988 -1.0742 

Mean -1.8493 0.5046 -1.0197 

Max -1.8015 0.5706 -0.9464 

Std 0.0278 0.0102 0.0341 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 14. Position 3 

 

TABLE VII.  NO OBJECT, POSITION 3 

 
Torque Readings 

J0 Torque J1 Torque J2 Torque 

Min 0.1232 0.5714 0.1008 

Mean 0.1285 0.5757 0.1028 

Max 0.1288 0.5826 0.1064 

Std 0.0014 0.0028 0.0027 

 
Force Readings 

X Force Y Force Z Force 

Min 1.1453 0.4181 -32.37 

Mean 1.4639 0.4992 -26.642 

Max 2.3523 0.606 -24.453 

Std 0.1763 0.0417 1.1317 

TABLE VIII.  LIGHT OBJECT, POSITION 3 

 
Torque Readings 

J0 Torque J1 Torque J2 Torque 

Min 0.1232 0.5714 0.0896 

Mean 0.1263 0.5722 0.0966 

Max 0.1288 0.577 0.1177 

Std 0.0028 0.0019 0.0037 

 
Force Readings 

X Force Y Force Z Force 

Min 0.9412 0.4101 -28.849 

Mean 1.4098 0.5115 -26.762 

Max 1.7413 0.6045 -23.171 

Std 0.1386 0.0423 0.9363 

TABLE IX.  HEAVY OBJECT, POSITION 3 

 
Torque Readings 

J0 Torque J1 Torque J2 Torque 

Min 0.112 0.5546 0.0784 

Mean 0.1128 0.5605 0.0893 

Max 0.1232 0.5938 0.1232 

Std 0.0025 0.0054 0.0056 

 
Force Readings 

X Force Y Force Z Force 

Min 0.5493 0.393 -27.181 

Mean 0.8713 0.466 -24.77 

Max 1.1222 0.5402 -22.199 

Std 0.1055 0.0335 0.8232 

 

 


