
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Lab 5: Final Project

James Kradjian

Robotics Engineering Major

Worcester Polytechnical Institute

Worcester, MA

jvkradhian@wpi.edu

Jonathan Redus

Electrical & Computer Engineering Major

Worcester Polytechnical Institute

Worcester, MA

jrredus@wpi.edu

Yil Verdeja

Robotics Engineering and Electrical &

Computer Engineering Major

Worcester Polytechnical Institute

Worcester, MA

yaverdeja@wpi.edu

This lab demonstrated the advanced concepts of computer

vision by tracking and manipulating of objects of various colors

and densities. Matlab was used to process images taken by a

PlayStation Eye web camera and translate those images into

instructions for the robot, as well as interpret data from the

strain gauges for force sensing at the end effector. Although

vision related decisions were functionally accurate, force related

decisions were inconsistent and inaccurate, thus the robot was

unable to sort by different weights. Overall, apart from the force

measurements, the robot was able to automatically identify an

object based on its color, reach out for that object, pick it up, and

sort it based on a combination of its color and weight.

Keywords—automation, computer vision, robotic manipulator,

sorting by color and weight

I. INTRODUCTION (HEADING 1)

This project accumulates everything that has been

implemented so far in the robotic manipulator system. In the

previous lab, the Jacobian was calculated, as well as the

forward and inverse velocity kinematics of the robotic arm,

which allowed to identify the singularities of the arm. Finally, a

numeric solution to the inverse position kinematics problem

was implemented which utilized Taylor series approximations

to reach a certain place in the workspace.

Building from the previous labs, this lab investigates an

automated robotic sorting system, where the robot has to

localize certain objects within its workspace using a camera,

pick them up, classify them based on weight and/or

appearance, and release them within a predefined area. The

objectives for this lab are as follow:

• Use vision to identify and localize objects

• Control the robot’s end effector

• Measure and display applied force vectors at the end

effector

• Sort different objects base on their weight and color

This lab has three main sections: (1) creating a force

sensing system, (2) adding vision based tracking, and (3)

creating an automated sorting system to sort objects in the

workspace by weight and color. Finally, using the numeric

inverse kinematic algorithm implemented from the previous

lab, a dynamic camera tracking was implemented to follow the

object in the camera workspace in real-time.

II. METHODOLOGY

This section will go through the steps that were taken to

complete this lab. It built on previous labs by implementing

force sensing at the end effector through use of the strain

gauges. It also added vision-based tracking, and motion.

Finally, all of these parts were combined to create an

autonomous sorting system which could organize objects in

the workspace based on the color and weight of the object.

A. Experimental Material

• A computer running Ubuntu

• An ST Nucleo-144 (STM32F746) development

board with ARM microcontroller

• An RRR arm, controlled by the Nucleo board

• A webcam, mounted above the workspace

• 2 x banana connector to banana connector cables

• 2 x micro-USB to USB cables

B. Force Sensing

In order to determine the weight of an object picked up by
the end effector, the force at the end effector needed to be
calculated. To do this, the torque at each joint was measured by
getting the status of the robot. Once measured, the torques
were multiplied by a manipulated jacobian matrix, to give the
force vector.

1) Average Torque Readings

In order to get an accurate torque reading, the values

detected by the sensors needed to be averaged to reduce noise.

This was done in the firmware, since it was faster to have the

firmware read the torque multiple times and then average it

rather than having the Matlab call several packets. The

averaging was implemented by summing the ADC readings

for a hundred readings, then dividing the readings by a

hundred, whenever the status server was polled. To increase

the accuracy of the torque readings, one hundred data points

were taken and averaged. Any readings with significant error

would have a marginal effect on the final torque value.

2) Calibrate the Joint Torque Sensors

Next, the torque sensor readings had to be changed from

ADC values into actual torque values. Given a calibration

mailto:jvkradhian@wpi.edu
mailto:jrredus@wpi.edu
mailto:yaverdeja@wpi.edu

curve, a formula to calculate the torques of each joint was

derived as seen below:

 τ=(x-y0)/k [Nm]

where τ is the torque, x is the ADC reading, y0 is the offset,

and k is the scaling factor. K was set to approximately 178.5,

and y0 was the reading of the ADC when there was no torque

on the sensor, which was different for each sensor. To find y0,

the robot was placed in an overhead configuration, and the

raw torque, in ADC counts, was determined to be: y0 = [515;

486; 507] for the first, second and third joint in the robotic

manipulator.

3) Calculate the Force at the End Effector

Once the torques were known, the force on the end

effector could be calculated. By calculating the statics

(statics3001 function) for the system, the following relation

was derived:

 F=Jp
-T(q)* τ

Where F is the force vector, Jp
-T(q) is the inverted transpose of

the Jacobian at joint angles q, and τ is a matrix of the torques

at each joint. The jacobian was calculated using the jacob0

function derived from the previous lab, while the torques at

each joint were found as described in previous sections. With

these values, the force vector was calculated.

C. Vision-Based Tracking

Before this lab, a camera was attached to the workspace,

so that objects within the workspace could be identified,

located, and eventually grabbed by the robot. The camera was

set up, so that locations within the camera frame could be

transformed to the workspace of the robot. A function was

created to locate certain objects by color, and the robot was

made to move to the location of the object. Finally, a dynamic

version of object tracking was implemented, which could

reach for an object, even as the object moved around the

workspace.

1) Camera-Robot Setup

The change from camera coordinates to workspace

coordinates largely depended on a provided function called

mn2xy. First, the camera had to be calibrated using the

calibrate_camera function. This function took several points

from the image that were provided by the user, correlated it

with points in the workspace, and created a transformation. By

using the mn2xy function with the calibrated pixels of the

calibrated coordinate system, it could be given points within

the camera coordinates, and would return points in the

workspace coordinates of the robot.

However, the results from mn2xy were not fully

accurate, so another function was created that tweaked the

values given by mn2xy. It divided the workspace into four

quadrants, and depending on what quadrant the object was in,

the x and y values were scaled and offset by differing

amounts. This provided enough precision to successfully

locate objects in the workspace.

Fig. 1. Transforming Centroid Location from Image pixels to Robot

Coordinate System

2) Object Localization

Next, the objects had to be identified within the image.

This was achieved by filtering the image by specific color,

then identifying the centers of the circles representing the

objects.

Filtering was done for each individual color: blue, green,

and yellow. Each color was filtered in whatever color space

had the most distinct representation of the color of the object.

For all cases, blue, green, and yellow, a Lab Color Space was

utilized for filtering each color as it provided the best results

under the specific environmental conditions. The filter

produced a binary image, where the objects were filled as

white and the rest of the space was black.

Next, the centers of each object in the workspace were

found. This was achieved by going through each of the three

binary images produced by color filtering, eroding, and

morphing, and then using the imfindcircles function the

centers and radii of the objects were identified. For each

object, a n by 2 matrix was returned, where n is the number of

objects of a specific color found in the workspace. These

centers were then passed into the program to be used later in

moving towards the objects. The centers of each object located

within the image was represented using an m by n location,

where m and n are pixels in the image of row and column

respectively. Using the mn2xy function, the centroids of each

object in the workspace was returned in terms of the robot

coordinate system.

Since the camera should only find objects within the

robots wooden countertop, a boolean function inWood was

written to return whether a specific coordinate was within the

robot platform workspace.

3) Reach for an Object

Next, the robot was made to move to one of the objects

found using the object localization function objLoc. This was

done by passing the x and y values that the localization

function returned for a specific object, along with a constant z

value, to a movement function. This movement function used

a quintic trajectory to move from the current position to the

desired position.

4) Dynamic Object Tracking

As a bonus, a script DynamicLocObj.m was created which

repeatedly checked the position of the object as the robot

moved towards it. This used a modified version of the

jacobian-based numeric solution to the inverse kinematics

problem implemented in lab 4. It operated by multiplying the

inverse Jacobian by the desired change in position, or the

difference between the desired position and the current

position. This gave the approximate change in joint angles

needed to move to the desired position. The difference for this

lab was that the desired position was found from the object

localization function, so that every iteration of the algorithm

updated the location of the object, if it changed, and if it did

not move, the arm simply moved to a more accurate position.

D. Automated Sorting System

The final step of the lab was to make a system which could

automatically sort objects within the workspace. This required

a few additions to the system: gripper control, object weight

sensing, and object sorting.

1) Control the Gripper

To control the gripper, an additional server had to be

created in the firmware as seen in figure 2. When it received a

packet, it would open the gripper if the first term of the packet

was a 2, and would close it otherwise. Additionally, the servo

motor had to be declared in the code, so that it could be

controlled. Then, in Matlab, a function was created to

communicate with the firmware server. It would send a

packet, telling the servo to open or close based on a boolean

input to the function.

2) Weigh Objects

Object weighing used the force detection at the end

effector, implemented in section 2.1. It found the z magnitude

of the force at the end effector and checked to see if it was

over or under a certain threshold. If it was greater, the object

was categorized as lightweight (since the force would be in the

negative z), and otherwise, the object was categorized as

heavy.

Fig. 2. Gripper Server in Firmware to actuate the gripper servo

Fig. 3. Example Color and Weight Sorting System

3) Pick and Sort Objects

Next, a sorting function had to be created, so that the robot

would know where to move the object in the automated

sorting system. This took the color and weight of the object,

and assigned each combination of color and weight to a

specific location off of the board, but still within the reachable

space of the robot. figure 3 shows an example of how the

items were sorted in the system implemented.

4) Automated Sorting System

With motion to the location of an object, gripper control,

object weight categorization, and object sorting, the final

automated sorting system was implemented. Figure 4 shows

the general program flow, where blue rectangles are processes,

yellow rectangles are decision points, and solid arrows

represent the code path.

Fig. 4. Flow Diagram of Automated Sorting System

The “Process Image” procedure was the object localization

function, described in section 2.2.2. This passed arrays of the

blue, green, and yellow arrays to a function which removed

objects that were not on the wood from the arrays. These

modified arrays were passed to a function which would exit

the loop if there were no objects in the arrays, or would return

the position of an object if there were still objects in the

arrays. The position was then used to move to a point slightly

above the object. Then, the arm descended, the gripper

grasped the object, and the arm lifted back up. Next, the object

was weighed, using the function described in section 2.3.2,

and the weight category, along with the color, was used to find

where to put the object. Then the object was moved there, a

new image was taken, and the code looped back to

organization check.

III. RESULTS

A. Force Sensing

The force sensing for the robot did not work because of

reading inaccuracies and a failure to account for the weight of

the robot in the statics calculation. Data was gathered to find

the errors and their possible causes, and is in Appendix A,

along with the procedure used to gather the data.

1) Average Torque Readings

Averaging the torque readings successfully reduced the

noise of the torque sensor data. It reduced the standard

deviation of the torque readings, taken over a 10 second

period, to less than 0.005 Nm in most cases. This is excellent,

since this would be less than a 0.05 N standard deviation for a

force applied directly at the end effector.

2) Calibrate the Joint Torque Sensors

The joint torque sensors were supposed to allow the

computer to read the exact torques being applied. However,

the calibration of the torque sensors did not account for the

weight of the robot, thus it was not properly offset at each

point. Also, the calibration process was challenging, as it

required moving the robot into a configuration where no

torque would be exerted at any joint, and any slight deviance

from that configuration could cause errors in the calibration.

Thus, the calibration was not very accurate, and the torque

reading at some points exceeded 0.5 Nm, even with no force

on the end effector.

3) Calculate the Force at the End Effector

The force calculation at the end effector was also

inaccurate. The standard deviation of the force calculated in a

certain configuration exceeded one newton, while the

measured difference between the light and heavy object was

frequently less than 0.1 N. Furthermore, the measured forces

for the same object differed dramatically depending on the

configuration of the robot.

Despite the errors with the readings, a 3D plot was created,

which represented the arm as a set of lines, and an arrow

representing the force vector positioned at the end effector, as

shown in figure 5. The arrow moved and scaled as the

calculated force moved and changed magnitude.

Fig. 5. Three Dimensional Plot of the Arm and Force Vector

B. Vision Based Tracking

The initial implementation of the vision tracking system

was not accurate enough to grab an object successfully, so

additional adjustments were made.

1) Camera-Robot Setup

In the camera setup, an additional function was added,

because the provided function did not give a sufficiently

accurate position. Though the additional function increased

the accuracy, it did occasionally missed objects in the

workspace. However, the resulting values were accurate

enough to demonstrate the functionality of the system.

2) Object Localization

The objLoc function is a function that identifies specific

objects based on color (blue, green and yellow) and returns

their corresponding centroids in x and y values of the robot

coordinate system. The object location function takes in two

parameters: a snapshot from the camera camFrame and an

image figure imPlot in order to redraw the image on the figure

without creating a new plot each time. To completely

understand the results of the object localization function, the

steps to filtering, and finding the centroids will be explained,

with their results. Figure 6 represents the original image that

was sent through to the function. As seen by that snapshot,

there are 6 objects, with 3 distinct colors, and 2 different

weights (black = light, gold = heavy).

Fig. 6. Original Image Captured for Object Localization

Through every iteration of the objLoc function, a new

snapshot has to be taken from the camera to update the

location of the centroids in the workspace. Once completed,

the program separately filters out individual colors from the

workspace using a function generated by the image

segmentation app in Matlab that utilizes the LAB color space.

Each type of color space was considered, however, the LAB

color space returned the best filtering of the colors due to the

light intensity changes in the lab environment. For every

individual color filtering, after obtaining the color-filtered

image, it then removes all connected components that have

fewer than a specified number of pixels from that binary

image. The number of pixels used was 400, as it was expected

that the whole centroids would be located.

After removing all the noise in the binary image, the

second step was to completely fill enclosed objects with white

space using the imfill function. Sometimes under certain light

sources, the filtering of a color could work on most parts of

that object. Other parts would not be recognized by the

filtering mask as it would be either too dark or too light.

Finally, once each circle was filled, due to the effects of noise

removing, some circles may be smaller than expected. In order

to fix this, using the bwmorph function with a thicken

parameter, it would thicken objects by adding pixels to the

exterior of objects.

These three steps in segmenting an image resulted in the

binary images seen in figures 7 through 9.

Fig. 7. Blue Binary Filtered Image

Fig. 8. Green Binary Filtered Image

Fig. 9. Yellow Binary Filtered Image

Fig. 10. Final Binary Filtered Image

Adding all of those images together results in binary image

of the original snapshot. As seen in figure 10, each object

closely resembles a circle, and is relatively close to the

original image.

Finally, for all three images in figures 7 through 9 that

filtered out each color, the centroids of each object were found

using the imfindcircles function with a parameter that would

only search for circles in a specific range. This function

returns an array of matrices that contains the centers and the

radius of each circle found. Once the centroids are located,

and the radiuses are calculated, the colored objects in the

original image are overlapped with a distinct colored

perimeter to show that the objects were found in the cameras

workspace. As seen in figure 11, the original image has each

colored object marked with a specific colored-perimeter.

Fig. 11. Final Binary Filtered Image

After changing the pixel values of the centroids to x and y

values corresponding to the robot workspace, their centroids

are outputted. The following points correspond to filtering of

the image in figure 6:

B = [(-0.0509, 0.0274) (0.0593, -0.0577)];

Y = [(0.0679, 0.0191) (-0.0446, 0.1026)];

G = [(-0.0303, -0.0507) (0.0616, 0.0911)];

This clearly shows that for each color, two objects were

found in a certain position inside the robot’s workspace.

3) Reach for an Object

Once the setup was modified, the robot was able to

successfully reach for an object most of the time. In the

process of accomplishing this, several issues were fixed. First,

several functions were not receiving arguments in the right

units or frames of references. This was because several

functions were not created with the convenience of using the

whole system in mind. Also, the PID constants needed to be

modified. This was a minor issue in past labs, but since the

robot needed to be able to hold objects and move precisely,

the issue was fixed. However, these issues were all dealt with

by the end of the lab.

4) Dynamic Object Tracking

The dynamic object tracking was also able to successfully

reach for an object most of the time. However, the system had

two issues. First, the loop was rather slow, which meant that

the response time of the robot was not quick enough to be

used for many practical applications. The other issues was that

the robot would sometimes move between the object and the

camera, so that the robot would not know where to move.

However, the function successfully demonstrated the basic

functionality of the concept.

C. Automated Sorting System

When creating the automated sorting system, no new

errors were introduced to the system. However, since this

system included work from all the other sections, the errors

mentioned previously affected the functionality of the sorting

system.

1) Control the Gripper

The gripper code worked adequately for the final version

of the lab. When it was initially created, however, it did not,

because the example code provided, which was used, had a

delay greater than the delay that the packet processor

tolerated. Once that was resolved, the physical gripper was

turned past the safe limit for it, and thus it could not close

fully. However, since this was not noticed for a while, the

gripper was damaged and had to be replaced. Once that was

done, and the code fixed so that it would not happen again, the

gripper worked properly.

2) Weigh Objects

Weighing the objects was not successful, because the force

sensing system did not work, as described in section 3.1. This

is because the weight categorizing function depended on the

force calculation function. In the end, the weight

categorization was effectively random.

3) Pick and Sort Objects

The pick and sort system worked most of the time by the

end of the lab. It was not completely accurate, since it

inherited the errors that the reach for an object function had.

However, it was sufficient to demonstrate the concepts of the

lab, and could be further refined if needed and time was

available.

4) Automate Sorting System

The automated sorting system inherited the errors of the

weight categorization and pick and sort functions. Thus, it

could do everything it intended to do most of the time, except

for weigh the objects, which it never did accurately.

IV. DISCUSION

A. Force Sensing

The force sensing portion of this lab did not work. This is

because the sensor readings did not provide accurate enough

data to correctly calculate the force, and because the weight of

the robot was not taken into account when calculating the

statics equation.

The torque sensor readings generally had a standard

deviation of less than 0.005 Nm. While this seems sufficient

for the purposes of this lab, it was not. The standard deviation

of the force was frequently less than 0.05 N, but in some cases

exceeded 0.1 N. This was problematic, because the measured

difference between the light and heavy objects was less than

0.1 N in many cases. Thus, more accurate torque sensing

would have needed to precisely measure the weight of the

robot.

Also, the statics calculation did not account for the weight

of the robot. This meant that the robot would calculate very

different forces for the same object, depending on the

configuration of the robot. Therefore, for accurate readings

throughout the workspace, the statics equations would have to

be recalculated.

B. Vision-Based Tracking

There were two issues common to all systems which used

vision tracking. The first was improper conversion from the

camera to the reference frame of the robot. A function was

provided which was supposed to do this transformation.

However, it did not work properly, so another function was

added to compensate for the remaining error. However, it

would have been better to modify the provided function to

correctly do all conversions, since it would have been easier to

follow. This was not done because the initial function was

rather difficult to understand, so it seemed safer not to modify

that which was not understood.

The function created to compensate for this error could

have been improved as well. It divided the space into

quadrants, and modified the positions depending on what

quadrant it was in. However, this did not deal with the

underlying issue of why it was distorted. It may have been that

perspective was not accounted for correctly, or that the lens of

the camera created a distortion. Since the cause was not

known, though, quadrants dealt well enough with the issue.

Thus, in future work, it may be helpful to find the source of

the distortion, so that more accurate equations can be used to

change the position values.

The second issue was that the conversion from the camera

to the workspace created an origin in front of the robot, while

the reference frame for controlling the robot had an origin at

the base of the robot. This lead to a great deal of confusion

when trying to plan the motion of the robot. Functions were

created to deal with this issue, but were not put in the best

place in the code. Had the function for translating from the

camera to the workspace also moved the origin to the base of

the robot, the whole problem would have been dealt with in

one location, rather than needing to insert the transformation

functions throughout the code.

1) Dynamic Object Tracking

The dynamic object tracking system had two additional

issues: it operated slowly, and sometimes the arm would move

between the camera and object, confusing the system.

The first issue was probably caused by inefficient code,

most likely the vision processing system. However, this is not

surprising, since vision processing requires many calculations.

Thus, a possible solution would be to reduce the amount of

code that will run. This means can be two things: removing

unnecessary code, and cropping the image, so that fewer

values are processed. Either, or both, should help speed the

system up.

The other issue is more complicated, because the system

needs to be able to distinguish between the arm obscuring an

object and an object being removed. This could be solved by

adding another camera, to see the blind spots created by the

robot motion. However, this would be more expensive and

complicated, and could make the code run slower. Thus, this

solution should only be implemented if absolutely necessary.

C. Automated Sorting System

The final automated sorting system introduced no new

errors. However, it inherited errors from previous sections,

which meant that it did not always work. It still operated

consistently enough to demonstrate the functionality of the

system.

V. CONCLUSION

This lab demonstrated knowledge of statics, computer

vision systems, and robotic systems by implementing a force

sensing system, vision-based object tracking, and an

autonomous object sorting system. Throughout the lab,

concepts from older labs were used as well, such as motion

planning and trajectory generation, position and differential

kinematics, and coding practices.

Even though there were a issues through the course of this

lab that set us back (inconsistent and inaccurate readings from

the load cell and force sensing), it wasn’t enough to affect the

results of the lab. Nevertheless, we were able to get everything

complete, and our hardships helped us to further understand

and think about new ways to get around the problem. A

suggested solution would have been to use centripetal forces

and angular velocities to calculate the forces at the end

effector. However, there wasn’t enough time to implement this

feature to the robot.

APPENDIX A: FORCE TESTING RESULTS

Due to problems with the force testing results, tests were

run to see where the issues arose. To do this, force readings

were taken in multiple positions while holding either nothing,

a light object, or a heavy object. For each position and weight,

the torque and force readings were recorded in a loop for ten

seconds. After the loop ran, statistics were calculated from the

data: the minimum, mean, maximum, and the standard

deviation. All of the statistics are recorded below, along with

images of the robot configurations:

Fig. 12. Position 1

TABLE I. NO OBJECT, POSITION 1

Torque Readings

J0 Torque J1 Torque J2 Torque

Min 0.1737 0.1849 0.0392

Mean 0.1799 0.199 0.0448

Max 0.1849 0.2073 0.0504

Std 0.0021 0.0037 0.0023

Force Readings

X Force Y Force Z Force

Min -0.3072 1.0505 -0.9282

Mean -0.2703 1.0883 -0.8807

Max -0.2327 1.1206 -0.7686

Std 0.0143 0.0127 0.0278

TABLE II. LIGHT OBJECT, POSITION 1

Torque Readings

J0 Torque J1 Torque J2 Torque

Min 0.1681 0.1961 0.0224

Mean 0.179 0.2061 0.0285

Max 0.1849 0.2129 0.0448

Std 0.0023 0.0038 0.0039

Force Readings

X Force Y Force Z Force

Min -0.2728 1.0149 -1.0861

Mean -0.177 1.0811 -1.0129

Max -0.1393 1.1171 -0.8645

Std 0.0226 0.0139 0.0366

TABLE III. HEAVY OBJECT, POSITION 1

Torque Readings

J0 Torque J1 Torque J2 Torque

Min 0.1625 0.1961 0.0448

Mean 0.1706 0.207 0.1022

Max 0.2185 0.2185 0.112

Std 0.0075 0.0053 0.0086

Force Readings

X Force Y Force Z Force

Min -0.6796 0.9679 -0.8615

Mean -0.6233 1.0152 -0.5955

Max -0.2914 1.2958 -0.5076

Std 0.0492 0.0438 0.0555

Fig. 13. Position 2

TABLE IV. NO OBJECT, POSITION 2

Torque Readings

J0 Torque J1 Torque J2 Torque

Min 0.1344 -0.028 0

Mean 0.14 0.4003 0.0069

Max 0.1681 0.4146 0.0896

Std 0.0043 0.0573 0.0112

Force Readings

X Force Y Force Z Force

Min -2.0683 0.5424 -1.1944

Mean -1.9891 0.5662 -1.1061

Max 0.4109 0.6682 0.8534

Std 0.321 0.0159 0.2623

TABLE V. LIGHT OBJECT, POSITION 2

Torque Readings

J0 Torque J1 Torque J2 Torque

Min 0.1344 0.3978 0

Mean 0.1376 0.4014 0.0051

Max 0.1401 0.4034 0.0112

Std 0.0028 0.0027 0.002

Force Readings

X Force Y Force Z Force

Min -2.0257 0.5427 -1.1841

Mean -1.9995 0.5568 -1.124

Max -1.9648 0.5698 -1.0585

Std 0.0157 0.0113 0.0223

TABLE VI. HEAVY OBJECT, POSITION 2

Torque Readings

J0 Torque J1 Torque J2 Torque

Min 0.1232 0.3641 0

Mean 0.1238 0.3685 0.0035

Max 0.1401 0.3922 0.0112

Std 0.0025 0.0048 0.0033

Force Readings

X Force Y Force Z Force

Min -1.959 0.4988 -1.0742

Mean -1.8493 0.5046 -1.0197

Max -1.8015 0.5706 -0.9464

Std 0.0278 0.0102 0.0341

Fig. 14. Position 3

TABLE VII. NO OBJECT, POSITION 3

Torque Readings

J0 Torque J1 Torque J2 Torque

Min 0.1232 0.5714 0.1008

Mean 0.1285 0.5757 0.1028

Max 0.1288 0.5826 0.1064

Std 0.0014 0.0028 0.0027

Force Readings

X Force Y Force Z Force

Min 1.1453 0.4181 -32.37

Mean 1.4639 0.4992 -26.642

Max 2.3523 0.606 -24.453

Std 0.1763 0.0417 1.1317

TABLE VIII. LIGHT OBJECT, POSITION 3

Torque Readings

J0 Torque J1 Torque J2 Torque

Min 0.1232 0.5714 0.0896

Mean 0.1263 0.5722 0.0966

Max 0.1288 0.577 0.1177

Std 0.0028 0.0019 0.0037

Force Readings

X Force Y Force Z Force

Min 0.9412 0.4101 -28.849

Mean 1.4098 0.5115 -26.762

Max 1.7413 0.6045 -23.171

Std 0.1386 0.0423 0.9363

TABLE IX. HEAVY OBJECT, POSITION 3

Torque Readings

J0 Torque J1 Torque J2 Torque

Min 0.112 0.5546 0.0784

Mean 0.1128 0.5605 0.0893

Max 0.1232 0.5938 0.1232

Std 0.0025 0.0054 0.0056

Force Readings

X Force Y Force Z Force

Min 0.5493 0.393 -27.181

Mean 0.8713 0.466 -24.77

Max 1.1222 0.5402 -22.199

Std 0.1055 0.0335 0.8232

