

Lab 3: Moving Block, Sine
Wave Generation, and

Simulation

Yil Verdeja, ECE Box 349
Yeggi Lee, ECE Box 191

Lab Section A01
September 28, 2018

TABLE OF CONTENTS

1 Introduction 2

2 Design Description 2
2.1 Moving Block 4

2.1.1 Creating the Block 4
2.1.2 Positioning 5
2.1.3 Debouncing 6
2.1.4 Extra Credit 7

2.2 DAC - Waveform Generation 7
2.2.1 SPI Creation 7
2.2.2 Sine Wave Logic 8
2.2.3 Output 9
2.2.4 Extra Credit 11

2.3 Simulation and Testing 13

3 FPGA Resource Usage and Warnings 14
3.1 Flip Flops (FF) 14
3.2 Synthesis Warnings 16

4 Conclusion 16

5 Appendix 18

1

1 Introduction
The purpose of this lab was to further understand the VGA controller in order to generate a
moving green block and to learn how to use a DAC module to generate a sine wave. The VGA
monitor was programmed to display a green block that can be controlled via 4 push-buttons. The
position of the block would then be displayed in the seven segment display. For the second part
of the lab, a DAC SPI interface with a shift register and state machine was implemented which
updated the DAC every 100 KHz with new 16-bit data values. Through this, a sine wave with a
frequency of 6.25KHz was created using 16 constant values per cycle.

From this initial implementation, by switching on certain switch configurations, different modes
were implemented. The first mode directly affected the VGA display by changing the color
depending on the position of the block, and allowing the block to travel infinitely between the
screen. The second and third mode outputted a triangle and sawtooth waveform respectively to
the DAC.

2 Design Description
The figure below shows the block diagram of the ​controller ​module. Using the MMCM, the
controller reduces the internal FPGA clock to 25 MHz and 10 MHz. Additionally, it instantiates
lower-level modules that will produce the output described in the ​Introduction​.

Figure 1. Top-Module Block Diagram

2

Debounce, Position Control, VGA and Color Logic, and Seven Segment Display
To create a 32 by 32 pixel moving block on the VGA display, the four push buttons to control
the movement of the block have to be debounced. If it weren’t, the block would instantly travel
to the end of the screen from a single press of a button. Using a state machine, the ​debounce
module outputs a clean button press.When the button is pressed, the output button goes high for
one 10 MHz clock cycle every 100 milliseconds. By doing this, a quick button press is not
registered as multiple button presses.

The ​position_control​ module is in charge of updating the X and Y position of the block as the
push buttons (left, right, up and down) on the FPGA board are pressed. It is also in charge of
limiting the block to the minimum and maximum boundaries of the VGA display. However, by
activating a switch the position of the block becomes capable of wrapping around the screen.
This means that if the block were to go past the maximum limit, it would appear at the minimum
limit, and vice versa. This module was able to implement this logic through the use of a binary
encoded state machine.

The ​seven_segment​ module uses all four seven-segment displays on the Basys 3 Board. Since
only one seven segment display can be lit at a time, the four anodes that control each display are
toggled at a frequency greater than 60 Hz. By increasing the frequency of each anode to 100 Hz,
the switching between each anode is undetectable to most humans as it produces a steady light to
an individual. Since each anode uses a 100 Hz, the​ seven_segment​ module slows down the 25 1

MHz high speed clock to a 400 Hz input clock. The seven-segment displays the current X and Y
position of the block in the format: XXYY. The X position ranges between 0 to 19, while the Y
position ranges between 0 to 14.

The VGA logic is created through a ​color_logic​ module and a provided ​VGA Controller​ module.
The ​VGA​ ​controller ​contains the logic to generate the synchronization signals, horizontal and
vertical pixel counters and video disable signal for the 640x480@60Hz resolution. On the other
hand, the ​color_logic ​module uses the horizontal and vertical pixel counters, as well as the
current X and Y positions of the moving block. Knowing the position of the block, if the pixel
count is between the general range shown below, then it should be colored green:

position*32 < pixel count < position*32 + 32

Note: hcount will use the current X position, while vcount will use the current Y position in
determining the range.

1 https://skeptics.stackexchange.com/questions/3348/can-the-human-eye-distinguish-frame-rates-above-60-hz

3

Using the same switch that provides the wrapping functionality of the block on the VGA display,
the switch is also used to change the color of the block depending on its current position.

DAC SPI Interface
The ​DAC ​module acts as an SPI interface and is in charge of creating both the 10 MHz serial
clock and the 100 kHz synchronous clock for the digital to analog converter. Through the use of
a shift register, this module also outputs 16 single-bits of data when the synchronous clock is low
for 16 cycles. By providing the digital information to create a sine, triangle or sawtooth
waveform, the output of the DAC is somewhat clean waveform depending on the switch
configuration provided.

2.1 Moving Block
For this lab, it was assumed that the 640x480 VGA monitor was divided into blocks of 32 pixels
high x 32 pixels wide. This would create a 20x15 block grid onto the display as shown in the
figure below. Therefore, the top left corner is in the x, y position (0, 0) while the bottom right
corner is (19, 14).

Figure 2. 20x15 Block Grid on VGA Monitor

2.1.1 Creating the Block
The main purpose of the ​color_logic ​module was to create a 32x32 pixel green block. In order to
do this, boundaries for the block were established using ​x_lines ​and ​y_lines​. In the example
below, the boundaries of the horizontal lines would be 64 and 96. On the other hand the
boundaries of the vertical lines would be 32 and 64 pixels. All the pixels within those
boundaries would then become green.

4

Figure 3. Color_logic Example

The x_lines and y_lines create the boundaries of the green block. Therefore, regardless of
position, the block will always be 32 pixels wide x high.

2.1.2 Positioning
Next, in order to make the block move using the buttons, the ​position_control ​module was
created. First, the module checks to make sure the reset button was not pressed. If pressed, then
the block returns to its original position, (0,0). Otherwise, the block will remain in its current
position.

Table 1. Position Rules of the Block

For the block to move anywhere, the attempted move must be within the boundaries of the VGA
monitor. The table above shows the requirements that must be fulfilled before the block moves.
For example, the block may only move up when its position is greater than the minimum value,
0, and when the UP button is pressed. To move right, the current horizontal position must be less
than 19 and so on. Assuming that the green position was in position (4, 3) and the DOWN button
was pressed, the current position would change into (4, 4). Once all the calculations are done, the
current position is then displayed in the seven seg display.

5

Button Pressed Requirements Next Position

UP (current_y > MIN_Y) && up position_y = current_y - 1'b1

DOWN (current_y < MAX_Y) && down position_y = current_y + 1'b1

RIGHT (current_x < MAX_X) && right position_x = current_x + 1'b1

LEFT (current_x > MIN_X) && left position_x = current_x - 1'b1

2.1.3 Debouncing
When a button is pressed, ​two metal parts connect with each other. Though it may seem that the
contact is made instantly, the components of the button mechanically bounce as they settle into
their new position. This causes the circuit to be opened and closed several times which is known
as bouncing. As the hardware usually works faster than the bouncing, the hardware thinks the
button is pressed multiple times resulting in the waveform below. 2

Figure 4. Bouncing Waveform when Button is Pressed 3

Therefore to prevent this issue, debouncing is done to ensure that only one signal will pass for a
single opening or closing of a button. In this case, through a state machine, the button will be
deactivated for a specified length of time after the first contact is made.

Figure 5. Debouncer State Machine

2 ​https://www.pololu.com/docs/0J16/4
3 ​http://vhdlguru.blogspot.com/2017/09/pushbutton-debounce-circuit-in-vhdl.html

6

https://www.pololu.com/docs/0J16/4
http://vhdlguru.blogspot.com/2017/09/pushbutton-debounce-circuit-in-vhdl.html

The states for the​ debouncer​ state machine are:
● State 0 (S0) - Button Press

○ The initial state of the debouncer checks for a button press. If the button is
pressed, the debouncer transitions into S1. Otherwise, it stays in S0.

● State 1 (S1) - Idle 1
○ S1 waits for a 15 Hz cycle and then moves on to the next state. Otherwise, the

debouncer remains in this state.
● State 2 (S2) - Button Debounce

○ S2 waits for 10 MHz clock cycle and then moves on to the next state.
● State 3 (S3) - Idle 2

○ Similarly to S1, S3 also waits for 15 Hz cycle and then moves on to S0.
Otherwise, the debouncer remains in this state.

2.1.4 Extra Credit
An additional feature was added in this part of the lab. If the switch is enabled, then the block
will be able to move past the boundaries of the VGA monitor. Additionally, the block change
colour depending on its position in the monitor. Depending on the x and y position, the block
will change red and blue colours respectively. Otherwise, if the switch is turned off, then the
block returns to green and is unable to move past the boundaries.

2.2 DAC - Waveform Generation
2.2.1 SPI Creation
When creating the SPI for the DAC, everything needs to be used on the negative edge of the
serial clock since the DAC does its conversions using the positive edge of the clock. To avoid
conflict, it’s recommended to use the negative clock edge as a trigger for the sequential logic.

Figure 6. Timing Diagram for Continuous 16-Bit

This DAC module acts as an SPI Interface that creates the sync (synchronous clock) for the DAC
(16 SCLK cycles at active low) at 100 kHz and outputs a single bit of data to the DAC. In order
to do this, a 100 kHz clock that is at active low for 16 SCLK cycles was created as a sync

7

counter. Then, a state machine was implemented that changes states depending on the value of
the sync counter as shown in the block diagram below. The output of the data is the most
important bit of the data being read.

Figure 7. DAC State Machine

The states are as follows:

● Load
○ The initial state of the DAC checks the value of the sync counter. If the sync

counter is 0, then the DAC transitions into the shift state. Otherwise, it stays in the
load state.

○ In this state, data is loaded into the shift register for two sync cycles.
● Shift

○ The shift state shifts the 16-bit data received to the left while sync is low
○ If the sync counter reaches 15, it moves to the next state; otherwise, it remains in

the shift state
● Idle

○ The idle state remains in this state until the sync counter reaches the value of 98.
Then it moves back to the load state.

2.2.2 Sine Wave Logic
In order to generate the sine wave waveform with a frequency of 6.25 kHz, sixteen constant
values per cycle were calculated using the formula below.

(t) 1.65 in(2πf t) .65v = · s + 1

For the following equation ​f​ is the frequency, ​t​ is time which is denoted by the current step and
the specified clock cycle. Since the frequency is 6250 kHz, then the period of the sine wave

8

should be 160 µs. Since each sine wave should be composed of 16 voltage steps, then each step
should take a sixteenth of the period which is 10 µs.

As shown in the table below, to determine the digital value, the resolution was found to be 77.27
bits/voltage. This was determined knowing that the data output had 255 bits and the DAC ranged
from a value of 0V to 3.3V.

Table 2. Constant Values for Sine Wave

2.2.3 Output
To verify the functionality of the DAC SPI, the board was connected to an oscilloscope. On the
top two oscilloscope images below, CH2 is sclk while CH1 is for sync. Clearly, from the
information provided by the oscilloscope, CH2 has a 10 MHz clock, while CH1 has a 100 kHz
clock. Using the cursor tool, the sync is low for 1.6 µs, which is equivalent to 16 sclk cycles.

9

Step Step Voltage (V) Digital Value Round Up Binary

0.00 1.65 127.50 128.00 10000000

1.00 2.28 176.29 177.00 10110001

2.00 2.82 217.66 218.00 11011010

3.00 3.17 245.29 246.00 10000000

4.00 3.30 255.00 255.00 11111111

5.00 3.17 245.29 246.00 11110110

6.00 2.82 217.66 218.00 11011010

7.00 2.28 176.29 177.00 10110001

8.00 1.65 127.50 128.00 10000000

9.00 1.02 78.71 79.00 1001111

10.00 0.48 37.34 38.00 100110

11.00 0.13 9.71 10.00 1010

12.00 0.00 0.00 0.00 0

13.00 0.13 9.71 10.00 1010

14.00 0.48 37.34 38.00 100110

15.00 1.02 78.71 79.00 1001111

Figure 8. Oscilloscope Verifications of DAC

The image in the middle shows sync as CH1, the sine wave data on din at CH4, and the sine
wave output on CH3. As expected, there are 16 steps to the sinusoidal wave and it operates at a
frequency of 6.25 kHz as specified. The bottom two images verify the functionality of the
oscilloscope by looking at the digital input shifted into DAC. On the right, as soon as a binary
value of 8’b10000000 is synced, the output is dropped to 1.72 V. On the left, as soon as a binary
value of 8’b10110001 is synced, the output increases to 2.40 V. Due to the assumption that the
DAC would provide a maximum of 3.3V, the small discrepancy of the step voltage was
expected.

10

2.2.4 Extra Credit
Using switches, the type of wave generated can be switched from a sine wave to either a triangle
wave or a sawtooth wave. Considering that both these waves have a linear rising or falling edge,
the potential difference between each step should be equal. The triangle wave is similar to the
sinusoidal wave there are 8 unique steps from 0V to 3.3V. On the other hand, for the sawtooth
wave, once it reaches 3.3V it drops to 0V. Therefore each voltage step on this waveform is about
0.206V.

The tables below show binary values determined for the triangle wave and sawtooth wave.

Table 3. Constant values for Triangle wave

Table 4. Constant values for a sawtooth wave

11

Step Voltage reading (V) Digital Val Binary

0 0.41 32 100000
1 0.83 64 1000000
2 1.24 96 1100000
3 1.66 128 10000000
4 2.06 159 10011111
5 2.47 191 10111111
6 2.89 223 11011111
7 3.30 255 11111111
8 2.89 223 11011111
9 2.47 191 10111111
10 2.06 159 10011111
11 1.66 128 10000000
12 1.24 96 1100000
13 0.83 64 1000000
14 0.41 32 100000
15 0.00 0 0

Step Voltage reading (V) Digital Val Binary

0 0.00 0 0
1 0.22 17 10001
2 0.44 34 100010
3 0.66 51 110011

The images below show the triangle wave and sawtooth wave output in different switch
configurations.

Figure 9. Triangle, Sawtooth and Sinusoidal waveforms at 6.25kHz using 16 steps

12

4 0.88 68 1000100
5 1.10 85 1010101
6 1.32 102 1100110
7 1.54 119 1110111
8 1.76 136 10001000
9 1.98 153 10011001
10 2.20 170 10101010
11 2.42 187 10111011
12 2.64 204 11001100
13 2.86 221 11011101
14 3.08 238 11101110
15 3.30 255 11111111

2.3 Simulation and Testing
A test bench was created to show how the sine wave data was transferred to the DAC. Creating
the test bench was simple as the only input that had to be changed was the internal FPGA clock
of 100 MHz with a 50% duty cycle. The only stimulus to the test bench was making reset high
for 100 ns. Doing this would make sure that every part of the circuit was reset correctly.

Although the scope is very large and it’s hard to see the detailed values, the sole purpose of the
figure below is to show the 16 steps generated by the sine wave generator inside the ​DAC
module.

Figure 10. 16 Steps Generated by DAC Sine Wave

Nonetheless, the two figures below provide a better understanding of a single SPI cycle. As
shown, the sclk has 5 cycles for every 500 ns. This proves that every cycle is as long as 100 ns
which is equivalent to a 10 MHz clock as expected. Second, it’s very clear that the synchronous
clock goes low for 16 sclk cycles. From the picture above, the synchronous clock has a
frequency of 100 kHz since it has a period of 10 us.

Figure 11. SPI Cycle

Figure 12. SPI Cycle Zoomed In

Lastly, to provide a better understanding of the sine wave data output, the figure above shows the
second step of the sine wave which should have a binary value of 10110001. An interesting thing
to note is that even though the DAC and the top-level controller are outputting the correct
readings to sclk, sync and din on the oscilloscope, it seems to be shifted by 1 more than it’s
supposed to when simulating it on the test bench.

13

3 FPGA Resource Usage and Warnings
This section gives an explanation to the FPGA resource usage and the warning messages
received.

3.1 Flip Flops (FF)
As shown in the figures below, the number of flip-flops used after implementation were 179. By
looking at all the modules, this value can be determined.

Since ​color_logic​, ​sinewave_gen​, ​trianglewave_gen​, and ​sawtoothwave_gen ​only use
combinational logic, they do not generate any flip flops.

Number of Flip Flops in the ​debounce​ module:

Note: Looking at the ​debounce​ module, it is unclear how there are two extra flip flops. Also,
since the debounce module is instantiated four different times for four different push buttons, the
total amount of flip flops amounts to 24*4 = ​96 flip flops​.

Number of Flip Flops in the ​DAC​ module:

Number of Flip Flops in the ​position_control ​module:

Number of Flip Flops in the ​seven_segment​ module:

14

Variable FF
counter 20

current_state 2
? 2

Total 24

Variable FF
current_state 2

count_16 4
data_reading 16
counter_sync 7

sync 1
Total 30

Variable FF
current_x 5
current_y 4

Total 9

Variable FF

Number of Flip Flops in the ​clk_sevenseg​ ​module:

Number of Flip Flops in the ​vga_controller​ module:

Our original analysis would have had a total flip flop value of 171, but due to the fact that the
debounce ​module had a two extra flip flops, the total number of flip flops increased by 8.

Figure 13. Post-Implementation FPGA Resource Usage

15

count 3
clk_sevenseg​ instantiation 16

Total 19

Variable FF
counter 16
Total 16

Variable FF
hcounter 11
vcounter 11

HS 1
VS 1

blank 1
Total 25

Figure 14. Flip Flop usage per module after synthesis

3.2 Synthesis Warnings
The program did not generate any problematic synthesis warning. According to a xilinx
employee this type of warning can be safely ignored. 4

Figure 15. Synthesis Warnings

4 Conclusion
An issue we had during the implementation phase was correctly switching between states.
Initially, our debounce state machine could not reach S2 and S3. After visualizing the solution on
paper and running by our code, we realized that both our ​current_state ​and ​next_state​ were 1-bit
wide instead of 2-bits wide. This was essentially keeping the debouncer in S0 and S1.

4https://forums.xilinx.com/t5/Synthesis/Meaning-of-synthesis-warning-Constraints-18-5210-No-constraint/m-p/8810
19?device-view=desktop

16

https://forums.xilinx.com/t5/Synthesis/Meaning-of-synthesis-warning-Constraints-18-5210-No-constraint/m-p/881019?device-view=desktop
https://forums.xilinx.com/t5/Synthesis/Meaning-of-synthesis-warning-Constraints-18-5210-No-constraint/m-p/881019?device-view=desktop

A source of error that hindered our progress, was a trimming waveform. Initially, the DAC was
verified using switches, but since it was shifted to the left by one extra bit (thus doubling it), the
output would have always gone from 0V to 3.3V. After taking a closer look at the oscilloscope
data, and individually checking each voltage step, we realized the error and were able to solve it
with a quick change in the shift-register logic.

Through this lab, we were able to see how to create a state machine for different
implementations such as the shift register and the debouncer. Furthermore, we also figured out
how to make a moving block through the use of state machines and learned why debouncing is
important. We also learned how to properly use the DAC and create different waveforms using
it.

Possible improvements in the code would be to reduce the number of states in the ​debouncer
from four to three. The first state (S1) and third state (S3) are very similar and could be
condensed into one state. However, the logic for the state would be much more complex. Perhaps
in the future when we become more familiar with state machines, this could be done.

An extension could be to create a game of Snake on the VGA display. However, this would
involve creating randomly generated blocks and a slowly increasing a snake body which is not
something we have learned yet . Similar to the ​position_control ​module, the boundaries would
be set. We would like to further explore how to create a game.

17

5 Appendix
Block produced through the VGA monitor and Basys3 board

18

